Take a triangular number, multiply it by 8 and add 1. What is special about your answer? Can you prove it?

Try to solve this very difficult problem and then study our two suggested solutions. How would you use your knowledge to try to solve variants on the original problem?

I added together some of my neighbours' house numbers. Can you explain the patterns I noticed?

Pick a square within a multiplication square and add the numbers on each diagonal. What do you notice?

Can you see how this picture illustrates the formula for the sum of the first six cube numbers?

Janine noticed, while studying some cube numbers, that if you take three consecutive whole numbers and multiply them together and then add the middle number of the three, you get the middle number. . . .

A serious but easily readable discussion of proof in mathematics with some amusing stories and some interesting examples.

This is an interactivity in which you have to sort the steps in the completion of the square into the correct order to prove the formula for the solutions of quadratic equations.

A, B & C own a half, a third and a sixth of a coin collection. Each grab some coins, return some, then share equally what they had put back, finishing with their own share. How rich are they?

Some diagrammatic 'proofs' of algebraic identities and inequalities.

Let a(n) be the number of ways of expressing the integer n as an ordered sum of 1's and 2's. Let b(n) be the number of ways of expressing n as an ordered sum of integers greater than 1. (i) Calculate. . . .

Consider the equation 1/a + 1/b + 1/c = 1 where a, b and c are natural numbers and 0 < a < b < c. Prove that there is only one set of values which satisfy this equation.

In the following sum the letters A, B, C, D, E and F stand for six distinct digits. Find all the ways of replacing the letters with digits so that the arithmetic is correct.

Find some triples of whole numbers a, b and c such that a^2 + b^2 + c^2 is a multiple of 4. Is it necessarily the case that a, b and c must all be even? If so, can you explain why?

This is the second of two articles and discusses problems relating to the curvature of space, shortest distances on surfaces, triangulations of surfaces and representation by graphs.

In this 7-sandwich: 7 1 3 1 6 4 3 5 7 2 4 6 2 5 there are 7 numbers between the 7s, 6 between the 6s etc. The article shows which values of n can make n-sandwiches and which cannot.

Take any two numbers between 0 and 1. Prove that the sum of the numbers is always less than one plus their product?

Prove that, given any three parallel lines, an equilateral triangle always exists with one vertex on each of the three lines.

You have twelve weights, one of which is different from the rest. Using just 3 weighings, can you identify which weight is the odd one out, and whether it is heavier or lighter than the rest?

Can you rearrange the cards to make a series of correct mathematical statements?

Kyle and his teacher disagree about his test score - who is right?

The country Sixtania prints postage stamps with only three values 6 lucres, 10 lucres and 15 lucres (where the currency is in lucres).Which values cannot be made up with combinations of these postage. . . .

Problem solving is at the heart of the NRICH site. All the problems give learners opportunities to learn, develop or use mathematical concepts and skills. Read here for more information.

Draw a 'doodle' - a closed intersecting curve drawn without taking pencil from paper. What can you prove about the intersections?

I want some cubes painted with three blue faces and three red faces. How many different cubes can be painted like that?

We are given a regular icosahedron having three red vertices. Show that it has a vertex that has at least two red neighbours.

What is the largest number of intersection points that a triangle and a quadrilateral can have?

When is it impossible to make number sandwiches?

Take any pair of two digit numbers x=ab and y=cd where, without loss of generality, ab > cd . Form two 4 digit numbers r=abcd and s=cdab and calculate: {r^2 - s^2} /{x^2 - y^2}.

The knight's move on a chess board is 2 steps in one direction and one step in the other direction. Prove that a knight cannot visit every square on the board once and only (a tour) on a 2 by n board. . . .

Prove that the internal angle bisectors of a triangle will never be perpendicular to each other.

Arrange the numbers 1 to 16 into a 4 by 4 array. Choose a number. Cross out the numbers on the same row and column. Repeat this process. Add up you four numbers. Why do they always add up to 34?

The picture illustrates the sum 1 + 2 + 3 + 4 = (4 x 5)/2. Prove the general formula for the sum of the first n natural numbers and the formula for the sum of the cubes of the first n natural. . . .

Advent Calendar 2011 - a mathematical activity for each day during the run-up to Christmas.

Can you arrange the numbers 1 to 17 in a row so that each adjacent pair adds up to a square number?

Some puzzles requiring no knowledge of knot theory, just a careful inspection of the patterns. A glimpse of the classification of knots and a little about prime knots, crossing numbers and. . . .

This article discusses how every Pythagorean triple (a, b, c) can be illustrated by a square and an L shape within another square. You are invited to find some triples for yourself.

This is the second article on right-angled triangles whose edge lengths are whole numbers.

What can you say about the lengths of the sides of a quadrilateral whose vertices are on a unit circle?

The first of two articles on Pythagorean Triples which asks how many right angled triangles can you find with the lengths of each side exactly a whole number measurement. Try it!

Toni Beardon has chosen this article introducing a rich area for practical exploration and discovery in 3D geometry

Find the largest integer which divides every member of the following sequence: 1^5-1, 2^5-2, 3^5-3, ... n^5-n.

The nth term of a sequence is given by the formula n^3 + 11n . Find the first four terms of the sequence given by this formula and the first term of the sequence which is bigger than one million. . . .

Show that if you add 1 to the product of four consecutive numbers the answer is ALWAYS a perfect square.