Take any two numbers between 0 and 1. Prove that the sum of the numbers is always less than one plus their product?

Explore what happens when you draw graphs of quadratic equations with coefficients based on a geometric sequence.

Find the largest integer which divides every member of the following sequence: 1^5-1, 2^5-2, 3^5-3, ... n^5-n.

Show that if you add 1 to the product of four consecutive numbers the answer is ALWAYS a perfect square.

Choose a couple of the sequences. Try to picture how to make the next, and the next, and the next... Can you describe your reasoning?

This shape comprises four semi-circles. What is the relationship between the area of the shaded region and the area of the circle on AB as diameter?

Find the missing angle between the two secants to the circle when the two angles at the centre subtended by the arcs created by the intersections of the secants and the circle are 50 and 120 degrees.

The sums of the squares of three related numbers is also a perfect square - can you explain why?

A serious but easily readable discussion of proof in mathematics with some amusing stories and some interesting examples.

A composite number is one that is neither prime nor 1. Show that 10201 is composite in any base.

Can you convince me of each of the following: If a square number is multiplied by a square number the product is ALWAYS a square number...

Investigate the sequences obtained by starting with any positive 2 digit number (10a+b) and repeatedly using the rule 10a+b maps to 10b-a to get the next number in the sequence.

A, B & C own a half, a third and a sixth of a coin collection. Each grab some coins, return some, then share equally what they had put back, finishing with their own share. How rich are they?

The tangles created by the twists and turns of the Conway rope trick are surprisingly symmetrical. Here's why!

Janine noticed, while studying some cube numbers, that if you take three consecutive whole numbers and multiply them together and then add the middle number of the three, you get the middle number. . . .

In this 7-sandwich: 7 1 3 1 6 4 3 5 7 2 4 6 2 5 there are 7 numbers between the 7s, 6 between the 6s etc. The article shows which values of n can make n-sandwiches and which cannot.

Can you see how this picture illustrates the formula for the sum of the first six cube numbers?

This article discusses how every Pythagorean triple (a, b, c) can be illustrated by a square and an L shape within another square. You are invited to find some triples for yourself.

Three points A, B and C lie in this order on a line, and P is any point in the plane. Use the Cosine Rule to prove the following statement.

This is the second article on right-angled triangles whose edge lengths are whole numbers.

Is the mean of the squares of two numbers greater than, or less than, the square of their means?

The first of two articles on Pythagorean Triples which asks how many right angled triangles can you find with the lengths of each side exactly a whole number measurement. Try it!

Take any pair of two digit numbers x=ab and y=cd where, without loss of generality, ab > cd . Form two 4 digit numbers r=abcd and s=cdab and calculate: {r^2 - s^2} /{x^2 - y^2}.

Caroline and James pick sets of five numbers. Charlie chooses three of them that add together to make a multiple of three. Can they stop him?

Pick a square within a multiplication square and add the numbers on each diagonal. What do you notice?

The nth term of a sequence is given by the formula n^3 + 11n . Find the first four terms of the sequence given by this formula and the first term of the sequence which is bigger than one million. . . .

When is it impossible to make number sandwiches?

Prove that the internal angle bisectors of a triangle will never be perpendicular to each other.

Can you visualise whether these nets fold up into 3D shapes? Watch the videos each time to see if you were correct.

A picture is made by joining five small quadrilaterals together to make a large quadrilateral. Is it possible to draw a similar picture if all the small quadrilaterals are cyclic?

If a two digit number has its digits reversed and the smaller of the two numbers is subtracted from the larger, prove the difference can never be prime.

Can you rearrange the cards to make a series of correct mathematical statements?

This article stems from research on the teaching of proof and offers guidance on how to move learners from focussing on experimental arguments to mathematical arguments and deductive reasoning.

What is the largest number of intersection points that a triangle and a quadrilateral can have?

Can you explain why a sequence of operations always gives you perfect squares?

Can you make sense of these three proofs of Pythagoras' Theorem?

Imagine we have four bags containing a large number of 1s, 4s, 7s and 10s. What numbers can we make?

Toni Beardon has chosen this article introducing a rich area for practical exploration and discovery in 3D geometry

You have twelve weights, one of which is different from the rest. Using just 3 weighings, can you identify which weight is the odd one out, and whether it is heavier or lighter than the rest?

Some diagrammatic 'proofs' of algebraic identities and inequalities.

L triominoes can fit together to make larger versions of themselves. Is every size possible to make in this way?

Imagine two identical cylindrical pipes meeting at right angles and think about the shape of the space which belongs to both pipes. Early Chinese mathematicians call this shape the mouhefanggai.

Patterns that repeat in a line are strangely interesting. How many types are there and how do you tell one type from another?

This article looks at knight's moves on a chess board and introduces you to the idea of vectors and vector addition.

Try to solve this very difficult problem and then study our two suggested solutions. How would you use your knowledge to try to solve variants on the original problem?

Advent Calendar 2011 - a mathematical activity for each day during the run-up to Christmas.

Some puzzles requiring no knowledge of knot theory, just a careful inspection of the patterns. A glimpse of the classification of knots and a little about prime knots, crossing numbers and. . . .