Find the missing angle between the two secants to the circle when the two angles at the centre subtended by the arcs created by the intersections of the secants and the circle are 50 and 120 degrees.

Points A, B and C are the centres of three circles, each one of which touches the other two. Prove that the perimeter of the triangle ABC is equal to the diameter of the largest circle.

Semicircles are drawn on the sides of a rectangle. Prove that the sum of the areas of the four crescents is equal to the area of the rectangle.

Take any rectangle ABCD such that AB > BC. The point P is on AB and Q is on CD. Show that there is exactly one position of P and Q such that APCQ is a rhombus.

Find the area of the annulus in terms of the length of the chord which is tangent to the inner circle.

ABCD is a square. P is the midpoint of AB and is joined to C. A line from D perpendicular to PC meets the line at the point Q. Prove AQ = AD.

It is obvious that we can fit four circles of diameter 1 unit in a square of side 2 without overlapping. What is the smallest square into which we can fit 3 circles of diameter 1 unit?

This shape comprises four semi-circles. What is the relationship between the area of the shaded region and the area of the circle on AB as diameter?

An equilateral triangle is sitting on top of a square. What is the radius of the circle that circumscribes this shape?

This article discusses how every Pythagorean triple (a, b, c) can be illustrated by a square and an L shape within another square. You are invited to find some triples for yourself.

Can you make sense of these three proofs of Pythagoras' Theorem?

Prove that the shaded area of the semicircle is equal to the area of the inner circle.

Draw some quadrilaterals on a 9-point circle and work out the angles. Is there a theorem?

A picture is made by joining five small quadrilaterals together to make a large quadrilateral. Is it possible to draw a similar picture if all the small quadrilaterals are cyclic?

If you know the sizes of the angles marked with coloured dots in this diagram which angles can you find by calculation?

The largest square which fits into a circle is ABCD and EFGH is a square with G and H on the line CD and E and F on the circumference of the circle. Show that AB = 5EF. Similarly the largest. . . .

What can you say about the lengths of the sides of a quadrilateral whose vertices are on a unit circle?

A blue coin rolls round two yellow coins which touch. The coins are the same size. How many revolutions does the blue coin make when it rolls all the way round the yellow coins? Investigate for a. . . .

Four identical right angled triangles are drawn on the sides of a square. Two face out, two face in. Why do the four vertices marked with dots lie on one line?

Write down a three-digit number Change the order of the digits to get a different number Find the difference between the two three digit numbers Follow the rest of the instructions then try. . . .

An equilateral triangle is constructed on BC. A line QD is drawn, where Q is the midpoint of AC. Prove that AB // QD.

The diagram shows a regular pentagon with sides of unit length. Find all the angles in the diagram. Prove that the quadrilateral shown in red is a rhombus.

This is the second article on right-angled triangles whose edge lengths are whole numbers.

The first of two articles on Pythagorean Triples which asks how many right angled triangles can you find with the lengths of each side exactly a whole number measurement. Try it!

Show that among the interior angles of a convex polygon there cannot be more than three acute angles.

It is impossible to trisect an angle using only ruler and compasses but it can be done using a carpenter's square.

Can you find the areas of the trapezia in this sequence?

Three points A, B and C lie in this order on a line, and P is any point in the plane. Use the Cosine Rule to prove the following statement.

Take a triangular number, multiply it by 8 and add 1. What is special about your answer? Can you prove it?

I added together some of my neighbours' house numbers. Can you explain the patterns I noticed?

If I tell you two sides of a right-angled triangle, you can easily work out the third. But what if the angle between the two sides is not a right angle?

What does logic mean to us and is that different to mathematical logic? We will explore these questions in this article.

Spotting patterns can be an important first step - explaining why it is appropriate to generalise is the next step, and often the most interesting and important.

A circle has centre O and angle POR = angle QOR. Construct tangents at P and Q meeting at T. Draw a circle with diameter OT. Do P and Q lie inside, or on, or outside this circle?

Here are some examples of 'cons', and see if you can figure out where the trick is.

Try to solve this very difficult problem and then study our two suggested solutions. How would you use your knowledge to try to solve variants on the original problem?

Take any two numbers between 0 and 1. Prove that the sum of the numbers is always less than one plus their product?

L triominoes can fit together to make larger versions of themselves. Is every size possible to make in this way?

The country Sixtania prints postage stamps with only three values 6 lucres, 10 lucres and 15 lucres (where the currency is in lucres).Which values cannot be made up with combinations of these postage. . . .

Advent Calendar 2011 - a mathematical activity for each day during the run-up to Christmas.

Show that if you add 1 to the product of four consecutive numbers the answer is ALWAYS a perfect square.

The nth term of a sequence is given by the formula n^3 + 11n . Find the first four terms of the sequence given by this formula and the first term of the sequence which is bigger than one million. . . .

Construct two equilateral triangles on a straight line. There are two lengths that look the same - can you prove it?

Take any pair of two digit numbers x=ab and y=cd where, without loss of generality, ab > cd . Form two 4 digit numbers r=abcd and s=cdab and calculate: {r^2 - s^2} /{x^2 - y^2}.

Can you make sense of the three methods to work out the area of the kite in the square?

Can you arrange the numbers 1 to 17 in a row so that each adjacent pair adds up to a square number?

When is it impossible to make number sandwiches?

Explore the continued fraction: 2+3/(2+3/(2+3/2+...)) What do you notice when successive terms are taken? What happens to the terms if the fraction goes on indefinitely?

Is the mean of the squares of two numbers greater than, or less than, the square of their means?