Take three consecutive numbers and add them together. What do you notice?
The Tower of Hanoi is an ancient mathematical challenge. Working on the building blocks may help you to explain the patterns you notice.
Draw some quadrilaterals on a 9-point circle and work out the angles. Is there a theorem?
Can you make sense of these three proofs of Pythagoras' Theorem?
Powers of numbers behave in surprising ways. Take a look at some of these and try to explain why they are true.
How many pairs of numbers can you find that add up to a multiple of 11? Do you notice anything interesting about your results?
Can you rearrange the cards to make a series of correct mathematical statements?
Pick a square within a multiplication square and add the numbers on each diagonal. What do you notice?
This shape comprises four semi-circles. What is the relationship between the area of the shaded region and the area of the circle on AB as diameter?
Choose a couple of the sequences. Try to picture how to make the next, and the next, and the next... Can you describe your reasoning?
The sums of the squares of three related numbers is also a perfect square - can you explain why?
When number pyramids have a sequence on the bottom layer, some interesting patterns emerge...
Show that if you add 1 to the product of four consecutive numbers the answer is ALWAYS a perfect square.
There are four children in a family, two girls, Kate and Sally, and two boys, Tom and Ben. How old are the children?
A, B & C own a half, a third and a sixth of a coin collection. Each grab some coins, return some, then share equally what they had put back, finishing with their own share. How rich are they?
Caroline and James pick sets of five numbers. Charlie tries to find three that add together to make a multiple of three. Can they stop him?
Which set of numbers that add to 10 have the largest product?
This is an interactivity in which you have to sort the steps in the completion of the square into the correct order to prove the formula for the solutions of quadratic equations.
Some diagrammatic 'proofs' of algebraic identities and inequalities.
Liam's house has a staircase with 12 steps. He can go down the steps one at a time or two at time. In how many different ways can Liam go down the 12 steps?
Can you produce convincing arguments that a selection of statements about numbers are true?
Find the missing angle between the two secants to the circle when the two angles at the centre subtended by the arcs created by the intersections of the secants and the circle are 50 and 120 degrees.
Take a triangular number, multiply it by 8 and add 1. What is special about your answer? Can you prove it?
Take any prime number greater than 3 , square it and subtract one. Working on the building blocks will help you to explain what is special about your results.
It is impossible to trisect an angle using only ruler and compasses but it can be done using a carpenter's square.
Four identical right angled triangles are drawn on the sides of a square. Two face out, two face in. Why do the four vertices marked with dots lie on one line?
Take any two numbers between 0 and 1. Prove that the sum of the numbers is always less than one plus their product?
Find the largest integer which divides every member of the following sequence: 1^5-1, 2^5-2, 3^5-3, ... n^5-n.
Explore the continued fraction: 2+3/(2+3/(2+3/2+...)) What do you notice when successive terms are taken? What happens to the terms if the fraction goes on indefinitely?
Is the mean of the squares of two numbers greater than, or less than, the square of their means?
Three points A, B and C lie in this order on a line, and P is any point in the plane. Use the Cosine Rule to prove the following statement.
Can you see how this picture illustrates the formula for the sum of the first six cube numbers?
I added together some of my neighbours' house numbers. Can you explain the patterns I noticed?
What is the largest number of intersection points that a triangle and a quadrilateral can have?
Gabriel multiplied together some numbers and then erased them. Can you figure out where each number was?
Can you find the areas of the trapezia in this sequence?
Construct two equilateral triangles on a straight line. There are two lengths that look the same - can you prove it?
Can you make sense of the three methods to work out what fraction of the total area is shaded?
Imagine we have four bags containing numbers from a sequence. What numbers can we make now?
Advent Calendar 2011 - a mathematical activity for each day during the run-up to Christmas.
If I tell you two sides of a right-angled triangle, you can easily work out the third. But what if the angle between the two sides is not a right angle?
An introduction to the binomial coefficient, and exploration of some of the formulae it satisfies.
Imagine we have four bags containing a large number of 1s, 4s, 7s and 10s. What numbers can we make?
L triominoes can fit together to make larger versions of themselves. Is every size possible to make in this way?
Explore what happens when you draw graphs of quadratic equations with coefficients based on a geometric sequence.
This article stems from research on the teaching of proof and offers guidance on how to move learners from focussing on experimental arguments to mathematical arguments and deductive reasoning.
Can you arrange the numbers 1 to 17 in a row so that each adjacent pair adds up to a square number?
What fractions can you divide the diagonal of a square into by simple folding?
Can you visualise whether these nets fold up into 3D shapes? Watch the videos each time to see if you were correct.