Let a(n) be the number of ways of expressing the integer n as an ordered sum of 1's and 2's. Let b(n) be the number of ways of expressing n as an ordered sum of integers greater than 1. (i) Calculate. . . .

The country Sixtania prints postage stamps with only three values 6 lucres, 10 lucres and 15 lucres (where the currency is in lucres).Which values cannot be made up with combinations of these postage. . . .

The knight's move on a chess board is 2 steps in one direction and one step in the other direction. Prove that a knight cannot visit every square on the board once and only (a tour) on a 2 by n board. . . .

Keep constructing triangles in the incircle of the previous triangle. What happens?

How many noughts are at the end of these giant numbers?

The tangles created by the twists and turns of the Conway rope trick are surprisingly symmetrical. Here's why!

I want some cubes painted with three blue faces and three red faces. How many different cubes can be painted like that?

Draw a 'doodle' - a closed intersecting curve drawn without taking pencil from paper. What can you prove about the intersections?

Pick a square within a multiplication square and add the numbers on each diagonal. What do you notice?

Can you make sense of these three proofs of Pythagoras' Theorem?

The nth term of a sequence is given by the formula n^3 + 11n . Find the first four terms of the sequence given by this formula and the first term of the sequence which is bigger than one million. . . .

Kyle and his teacher disagree about his test score - who is right?

Can you convince me of each of the following: If a square number is multiplied by a square number the product is ALWAYS a square number...

Find the missing angle between the two secants to the circle when the two angles at the centre subtended by the arcs created by the intersections of the secants and the circle are 50 and 120 degrees.

Find the largest integer which divides every member of the following sequence: 1^5-1, 2^5-2, 3^5-3, ... n^5-n.

Show that if you add 1 to the product of four consecutive numbers the answer is ALWAYS a perfect square.

The problem is how did Archimedes calculate the lengths of the sides of the polygons which needed him to be able to calculate square roots?

A, B & C own a half, a third and a sixth of a coin collection. Each grab some coins, return some, then share equally what they had put back, finishing with their own share. How rich are they?

The sums of the squares of three related numbers is also a perfect square - can you explain why?

Janine noticed, while studying some cube numbers, that if you take three consecutive whole numbers and multiply them together and then add the middle number of the three, you get the middle number. . . .

Euler found four whole numbers such that the sum of any two of the numbers is a perfect square...

Can you explain why a sequence of operations always gives you perfect squares?

Take any two numbers between 0 and 1. Prove that the sum of the numbers is always less than one plus their product?

Can you see how this picture illustrates the formula for the sum of the first six cube numbers?

Caroline and James pick sets of five numbers. Charlie chooses three of them that add together to make a multiple of three. Can they stop him?

It is impossible to trisect an angle using only ruler and compasses but it can be done using a carpenter's square.

If you know the sizes of the angles marked with coloured dots in this diagram which angles can you find by calculation?

Is the mean of the squares of two numbers greater than, or less than, the square of their means?

Explore the continued fraction: 2+3/(2+3/(2+3/2+...)) What do you notice when successive terms are taken? What happens to the terms if the fraction goes on indefinitely?

Find the smallest positive integer N such that N/2 is a perfect cube, N/3 is a perfect fifth power and N/5 is a perfect seventh power.

The largest square which fits into a circle is ABCD and EFGH is a square with G and H on the line CD and E and F on the circumference of the circle. Show that AB = 5EF. Similarly the largest. . . .

The picture illustrates the sum 1 + 2 + 3 + 4 = (4 x 5)/2. Prove the general formula for the sum of the first n natural numbers and the formula for the sum of the cubes of the first n natural. . . .

Four jewellers share their stock. Can you work out the relative values of their gems?

Three points A, B and C lie in this order on a line, and P is any point in the plane. Use the Cosine Rule to prove the following statement.

What can you say about the lengths of the sides of a quadrilateral whose vertices are on a unit circle?

Prove that if a^2+b^2 is a multiple of 3 then both a and b are multiples of 3.

Take any pair of two digit numbers x=ab and y=cd where, without loss of generality, ab > cd . Form two 4 digit numbers r=abcd and s=cdab and calculate: {r^2 - s^2} /{x^2 - y^2}.

Take any prime number greater than 3 , square it and subtract one. Working on the building blocks will help you to explain what is special about your results.

A blue coin rolls round two yellow coins which touch. The coins are the same size. How many revolutions does the blue coin make when it rolls all the way round the yellow coins? Investigate for a. . . .

The first of two articles on Pythagorean Triples which asks how many right angled triangles can you find with the lengths of each side exactly a whole number measurement. Try it!

There are four children in a family, two girls, Kate and Sally, and two boys, Tom and Ben. How old are the children?

It is obvious that we can fit four circles of diameter 1 unit in a square of side 2 without overlapping. What is the smallest square into which we can fit 3 circles of diameter 1 unit?

Prove that, given any three parallel lines, an equilateral triangle always exists with one vertex on each of the three lines.

Semicircles are drawn on the sides of a rectangle. Prove that the sum of the areas of the four crescents is equal to the area of the rectangle.

Here are some examples of 'cons', and see if you can figure out where the trick is.

Prove that the shaded area of the semicircle is equal to the area of the inner circle.

This article invites you to get familiar with a strategic game called "sprouts". The game is simple enough for younger children to understand, and has also provided experienced mathematicians with. . . .

Prove Pythagoras' Theorem using enlargements and scale factors.