Draw some quadrilaterals on a 9-point circle and work out the angles. Is there a theorem?

What can you say about the lengths of the sides of a quadrilateral whose vertices are on a unit circle?

Take any rectangle ABCD such that AB > BC. The point P is on AB and Q is on CD. Show that there is exactly one position of P and Q such that APCQ is a rhombus.

Show that among the interior angles of a convex polygon there cannot be more than three acute angles.

An equilateral triangle is constructed on BC. A line QD is drawn, where Q is the midpoint of AC. Prove that AB // QD.

Can you find the areas of the trapezia in this sequence?

It is impossible to trisect an angle using only ruler and compasses but it can be done using a carpenter's square.

A circle has centre O and angle POR = angle QOR. Construct tangents at P and Q meeting at T. Draw a circle with diameter OT. Do P and Q lie inside, or on, or outside this circle?

A picture is made by joining five small quadrilaterals together to make a large quadrilateral. Is it possible to draw a similar picture if all the small quadrilaterals are cyclic?

ABCD is a square. P is the midpoint of AB and is joined to C. A line from D perpendicular to PC meets the line at the point Q. Prove AQ = AD.

Construct two equilateral triangles on a straight line. There are two lengths that look the same - can you prove it?

Prove that the internal angle bisectors of a triangle will never be perpendicular to each other.

Can you rearrange the cards to make a series of correct mathematical statements?

This is the second article on right-angled triangles whose edge lengths are whole numbers.

Can you make sense of the three methods to work out the area of the kite in the square?

Do you know how to find the area of a triangle? You can count the squares. What happens if we turn the triangle on end? Press the button and see. Try counting the number of units in the triangle now. . . .

Investigate the sequences obtained by starting with any positive 2 digit number (10a+b) and repeatedly using the rule 10a+b maps to 10b-a to get the next number in the sequence.

Advent Calendar 2011 - a mathematical activity for each day during the run-up to Christmas.

Janine noticed, while studying some cube numbers, that if you take three consecutive whole numbers and multiply them together and then add the middle number of the three, you get the middle number. . . .

If you think that mathematical proof is really clearcut and universal then you should read this article.

Try to solve this very difficult problem and then study our two suggested solutions. How would you use your knowledge to try to solve variants on the original problem?

Take any pair of two digit numbers x=ab and y=cd where, without loss of generality, ab > cd . Form two 4 digit numbers r=abcd and s=cdab and calculate: {r^2 - s^2} /{x^2 - y^2}.

Problem solving is at the heart of the NRICH site. All the problems give learners opportunities to learn, develop or use mathematical concepts and skills. Read here for more information.

This article stems from research on the teaching of proof and offers guidance on how to move learners from focussing on experimental arguments to mathematical arguments and deductive reasoning.

The first of two articles on Pythagorean Triples which asks how many right angled triangles can you find with the lengths of each side exactly a whole number measurement. Try it!

This article discusses how every Pythagorean triple (a, b, c) can be illustrated by a square and an L shape within another square. You are invited to find some triples for yourself.

Some puzzles requiring no knowledge of knot theory, just a careful inspection of the patterns. A glimpse of the classification of knots and a little about prime knots, crossing numbers and. . . .

Pick a square within a multiplication square and add the numbers on each diagonal. What do you notice?

Can you make sense of these three proofs of Pythagoras' Theorem?

What fractions can you divide the diagonal of a square into by simple folding?

Some diagrammatic 'proofs' of algebraic identities and inequalities.

A serious but easily readable discussion of proof in mathematics with some amusing stories and some interesting examples.

Prove Pythagoras' Theorem using enlargements and scale factors.

Points A, B and C are the centres of three circles, each one of which touches the other two. Prove that the perimeter of the triangle ABC is equal to the diameter of the largest circle.

Find the area of the annulus in terms of the length of the chord which is tangent to the inner circle.

Semicircles are drawn on the sides of a rectangle. Prove that the sum of the areas of the four crescents is equal to the area of the rectangle.

It is obvious that we can fit four circles of diameter 1 unit in a square of side 2 without overlapping. What is the smallest square into which we can fit 3 circles of diameter 1 unit?

Spotting patterns can be an important first step - explaining why it is appropriate to generalise is the next step, and often the most interesting and important.

This shape comprises four semi-circles. What is the relationship between the area of the shaded region and the area of the circle on AB as diameter?

This is an interactivity in which you have to sort the steps in the completion of the square into the correct order to prove the formula for the solutions of quadratic equations.

I added together some of my neighbours' house numbers. Can you explain the patterns I noticed?

Four identical right angled triangles are drawn on the sides of a square. Two face out, two face in. Why do the four vertices marked with dots lie on one line?

The diagonal of a square intersects the line joining one of the unused corners to the midpoint of the opposite side. What do you notice about the line segments produced?

An equilateral triangle is sitting on top of a square. What is the radius of the circle that circumscribes this shape?

Prove that the shaded area of the semicircle is equal to the area of the inner circle.

There are 12 identical looking coins, one of which is a fake. The counterfeit coin is of a different weight to the rest. What is the minimum number of weighings needed to locate the fake coin?

What does logic mean to us and is that different to mathematical logic? We will explore these questions in this article.