Take any pair of two digit numbers x=ab and y=cd where, without loss of generality, ab > cd . Form two 4 digit numbers r=abcd and s=cdab and calculate: {r^2 - s^2} /{x^2 - y^2}.

I added together some of my neighbours' house numbers. Can you explain the patterns I noticed?

Pick a square within a multiplication square and add the numbers on each diagonal. What do you notice?

Take any two numbers between 0 and 1. Prove that the sum of the numbers is always less than one plus their product?

Arrange the numbers 1 to 16 into a 4 by 4 array. Choose a number. Cross out the numbers on the same row and column. Repeat this process. Add up you four numbers. Why do they always add up to 34?

Janine noticed, while studying some cube numbers, that if you take three consecutive whole numbers and multiply them together and then add the middle number of the three, you get the middle number. . . .

A, B & C own a half, a third and a sixth of a coin collection. Each grab some coins, return some, then share equally what they had put back, finishing with their own share. How rich are they?

Try to solve this very difficult problem and then study our two suggested solutions. How would you use your knowledge to try to solve variants on the original problem?

Prove that if the integer n is divisible by 4 then it can be written as the difference of two squares.

Show that if you add 1 to the product of four consecutive numbers the answer is ALWAYS a perfect square.

Can you see how this picture illustrates the formula for the sum of the first six cube numbers?

A serious but easily readable discussion of proof in mathematics with some amusing stories and some interesting examples.

The picture illustrates the sum 1 + 2 + 3 + 4 = (4 x 5)/2. Prove the general formula for the sum of the first n natural numbers and the formula for the sum of the cubes of the first n natural. . . .

This is the second of two articles and discusses problems relating to the curvature of space, shortest distances on surfaces, triangulations of surfaces and representation by graphs.

Find the largest integer which divides every member of the following sequence: 1^5-1, 2^5-2, 3^5-3, ... n^5-n.

The nth term of a sequence is given by the formula n^3 + 11n . Find the first four terms of the sequence given by this formula and the first term of the sequence which is bigger than one million. . . .

Some diagrammatic 'proofs' of algebraic identities and inequalities.

The country Sixtania prints postage stamps with only three values 6 lucres, 10 lucres and 15 lucres (where the currency is in lucres).Which values cannot be made up with combinations of these postage. . . .

Find some triples of whole numbers a, b and c such that a^2 + b^2 + c^2 is a multiple of 4. Is it necessarily the case that a, b and c must all be even? If so, can you explain why?

Kyle and his teacher disagree about his test score - who is right?

Consider the equation 1/a + 1/b + 1/c = 1 where a, b and c are natural numbers and 0 < a < b < c. Prove that there is only one set of values which satisfy this equation.

The sums of the squares of three related numbers is also a perfect square - can you explain why?

Spotting patterns can be an important first step - explaining why it is appropriate to generalise is the next step, and often the most interesting and important.

Eulerian and Hamiltonian circuits are defined with some simple examples and a couple of puzzles to illustrate Hamiltonian circuits.

You have twelve weights, one of which is different from the rest. Using just 3 weighings, can you identify which weight is the odd one out, and whether it is heavier or lighter than the rest?

Can you rearrange the cards to make a series of correct mathematical statements?

Advent Calendar 2011 - a mathematical activity for each day during the run-up to Christmas.

When is it impossible to make number sandwiches?

What is the largest number of intersection points that a triangle and a quadrilateral can have?

Write down a three-digit number Change the order of the digits to get a different number Find the difference between the two three digit numbers Follow the rest of the instructions then try. . . .

Use the numbers in the box below to make the base of a top-heavy pyramid whose top number is 200.

If a two digit number has its digits reversed and the smaller of the two numbers is subtracted from the larger, prove the difference can never be prime.

In the following sum the letters A, B, C, D, E and F stand for six distinct digits. Find all the ways of replacing the letters with digits so that the arithmetic is correct.

Problem solving is at the heart of the NRICH site. All the problems give learners opportunities to learn, develop or use mathematical concepts and skills. Read here for more information.

A little bit of algebra explains this 'magic'. Ask a friend to pick 3 consecutive numbers and to tell you a multiple of 3. Then ask them to add the four numbers and multiply by 67, and to tell you. . . .

I want some cubes painted with three blue faces and three red faces. How many different cubes can be painted like that?

Can you explain why a sequence of operations always gives you perfect squares?

Euler found four whole numbers such that the sum of any two of the numbers is a perfect square...

There are four children in a family, two girls, Kate and Sally, and two boys, Tom and Ben. How old are the children?

A composite number is one that is neither prime nor 1. Show that 10201 is composite in any base.

Can you cross each of the seven bridges that join the north and south of the river to the two islands, once and once only, without retracing your steps?

In how many distinct ways can six islands be joined by bridges so that each island can be reached from every other island...

ABCD is a square. P is the midpoint of AB and is joined to C. A line from D perpendicular to PC meets the line at the point Q. Prove AQ = AD.

There are 12 identical looking coins, one of which is a fake. The counterfeit coin is of a different weight to the rest. What is the minimum number of weighings needed to locate the fake coin?