Take any two numbers between 0 and 1. Prove that the sum of the numbers is always less than one plus their product?
A, B & C own a half, a third and a sixth of a coin collection. Each grab some coins, return some, then share equally what they had put back, finishing with their own share. How rich are they?
Janine noticed, while studying some cube numbers, that if you take three consecutive whole numbers and multiply them together and then add the middle number of the three, you get the middle number. . . .
The sums of the squares of three related numbers is also a perfect square - can you explain why?
Explore what happens when you draw graphs of quadratic equations with coefficients based on a geometric sequence.
Clearly if a, b and c are the lengths of the sides of an equilateral triangle then a^2 + b^2 + c^2 = ab + bc + ca. Is the converse true?
The problem is how did Archimedes calculate the lengths of the sides of the polygons which needed him to be able to calculate square roots?
Is the mean of the squares of two numbers greater than, or less than, the square of their means?
Pick a square within a multiplication square and add the numbers on each diagonal. What do you notice?
If a two digit number has its digits reversed and the smaller of the two numbers is subtracted from the larger, prove the difference can never be prime.
Find the missing angle between the two secants to the circle when the two angles at the centre subtended by the arcs created by the intersections of the secants and the circle are 50 and 120 degrees.
Find the largest integer which divides every member of the following sequence: 1^5-1, 2^5-2, 3^5-3, ... n^5-n.
The nth term of a sequence is given by the formula n^3 + 11n . Find the first four terms of the sequence given by this formula and the first term of the sequence which is bigger than one million. . . .
Show that if you add 1 to the product of four consecutive numbers the answer is ALWAYS a perfect square.
Four jewellers share their stock. Can you work out the relative values of their gems?
There are 12 identical looking coins, one of which is a fake. The counterfeit coin is of a different weight to the rest. What is the minimum number of weighings needed to locate the fake coin?
Take any pair of two digit numbers x=ab and y=cd where, without loss of generality, ab > cd . Form two 4 digit numbers r=abcd and s=cdab and calculate: {r^2 - s^2} /{x^2 - y^2}.
Investigate the sequences obtained by starting with any positive 2 digit number (10a+b) and repeatedly using the rule 10a+b maps to 10b-a to get the next number in the sequence.
Can you explain why a sequence of operations always gives you perfect squares?
Kyle and his teacher disagree about his test score - who is right?
Can you make sense of these three proofs of Pythagoras' Theorem?
A serious but easily readable discussion of proof in mathematics with some amusing stories and some interesting examples.
If you think that mathematical proof is really clearcut and universal then you should read this article.
Can you see how this picture illustrates the formula for the sum of the first six cube numbers?
I am exactly n times my daughter's age. In m years I shall be ... How old am I?
Prove that the shaded area of the semicircle is equal to the area of the inner circle.
Prove that if the integer n is divisible by 4 then it can be written as the difference of two squares.
Can you find the areas of the trapezia in this sequence?
Semicircles are drawn on the sides of a rectangle. Prove that the sum of the areas of the four crescents is equal to the area of the rectangle.
Prove that, given any three parallel lines, an equilateral triangle always exists with one vertex on each of the three lines.
It is obvious that we can fit four circles of diameter 1 unit in a square of side 2 without overlapping. What is the smallest square into which we can fit 3 circles of diameter 1 unit?
The picture illustrates the sum 1 + 2 + 3 + 4 = (4 x 5)/2. Prove the general formula for the sum of the first n natural numbers and the formula for the sum of the cubes of the first n natural. . . .
There are four children in a family, two girls, Kate and Sally, and two boys, Tom and Ben. How old are the children?
A paradox is a statement that seems to be both untrue and true at the same time. This article looks at a few examples and challenges you to investigate them for yourself.
This is the second article on right-angled triangles whose edge lengths are whole numbers.
Imagine two identical cylindrical pipes meeting at right angles and think about the shape of the space which belongs to both pipes. Early Chinese mathematicians call this shape the mouhefanggai.
In this 7-sandwich: 7 1 3 1 6 4 3 5 7 2 4 6 2 5 there are 7 numbers between the 7s, 6 between the 6s etc. The article shows which values of n can make n-sandwiches and which cannot.
This article discusses how every Pythagorean triple (a, b, c) can be illustrated by a square and an L shape within another square. You are invited to find some triples for yourself.
Some puzzles requiring no knowledge of knot theory, just a careful inspection of the patterns. A glimpse of the classification of knots and a little about prime knots, crossing numbers and. . . .
This article looks at knight's moves on a chess board and introduces you to the idea of vectors and vector addition.
The first of two articles on Pythagorean Triples which asks how many right angled triangles can you find with the lengths of each side exactly a whole number measurement. Try it!
Three points A, B and C lie in this order on a line, and P is any point in the plane. Use the Cosine Rule to prove the following statement.
ABCD is a square. P is the midpoint of AB and is joined to C. A line from D perpendicular to PC meets the line at the point Q. Prove AQ = AD.
It is impossible to trisect an angle using only ruler and compasses but it can be done using a carpenter's square.
The country Sixtania prints postage stamps with only three values 6 lucres, 10 lucres and 15 lucres (where the currency is in lucres).Which values cannot be made up with combinations of these postage. . . .
Find the smallest positive integer N such that N/2 is a perfect cube, N/3 is a perfect fifth power and N/5 is a perfect seventh power.
What can you say about the lengths of the sides of a quadrilateral whose vertices are on a unit circle?
A composite number is one that is neither prime nor 1. Show that 10201 is composite in any base.