The Tower of Hanoi is an ancient mathematical challenge. Working on the building blocks may help you to explain the patterns you notice.

Imagine we have four bags containing a large number of 1s, 4s, 7s and 10s. What numbers can we make?

When number pyramids have a sequence on the bottom layer, some interesting patterns emerge...

Nine cross country runners compete in a team competition in which there are three matches. If you were a judge how would you decide who would win?

How many pairs of numbers can you find that add up to a multiple of 11? Do you notice anything interesting about your results?

Imagine we have four bags containing numbers from a sequence. What numbers can we make now?

Which set of numbers that add to 10 have the largest product?

This article looks at knight's moves on a chess board and introduces you to the idea of vectors and vector addition.

Spotting patterns can be an important first step - explaining why it is appropriate to generalise is the next step, and often the most interesting and important.

Kyle and his teacher disagree about his test score - who is right?

These formulae are often quoted, but rarely proved. In this article, we derive the formulae for the volumes of a square-based pyramid and a cone, using relatively simple mathematical concepts.

Caroline and James pick sets of five numbers. Charlie chooses three of them that add together to make a multiple of three. Can they stop him?

A little bit of algebra explains this 'magic'. Ask a friend to pick 3 consecutive numbers and to tell you a multiple of 3. Then ask them to add the four numbers and multiply by 67, and to tell you. . . .

A paradox is a statement that seems to be both untrue and true at the same time. This article looks at a few examples and challenges you to investigate them for yourself.

Construct two equilateral triangles on a straight line. There are two lengths that look the same - can you prove it?

Can you make sense of the three methods to work out the area of the kite in the square?

Baker, Cooper, Jones and Smith are four people whose occupations are teacher, welder, mechanic and programmer, but not necessarily in that order. What is each person’s occupation?

In how many ways can you arrange three dice side by side on a surface so that the sum of the numbers on each of the four faces (top, bottom, front and back) is equal?

Pick the number of times a week that you eat chocolate. This number must be more than one but less than ten. Multiply this number by 2. Add 5 (for Sunday). Multiply by 50... Can you explain why it. . . .

Can you cross each of the seven bridges that join the north and south of the river to the two islands, once and once only, without retracing your steps?

Use the numbers in the box below to make the base of a top-heavy pyramid whose top number is 200.

A composite number is one that is neither prime nor 1. Show that 10201 is composite in any base.

There are four children in a family, two girls, Kate and Sally, and two boys, Tom and Ben. How old are the children?

Take any rectangle ABCD such that AB > BC. The point P is on AB and Q is on CD. Show that there is exactly one position of P and Q such that APCQ is a rhombus.

Consider the equation 1/a + 1/b + 1/c = 1 where a, b and c are natural numbers and 0 < a < b < c. Prove that there is only one set of values which satisfy this equation.

Prove Pythagoras' Theorem using enlargements and scale factors.

In how many distinct ways can six islands be joined by bridges so that each island can be reached from every other island...

Imagine two identical cylindrical pipes meeting at right angles and think about the shape of the space which belongs to both pipes. Early Chinese mathematicians call this shape the mouhefanggai.

It is impossible to trisect an angle using only ruler and compasses but it can be done using a carpenter's square.

Find the largest integer which divides every member of the following sequence: 1^5-1, 2^5-2, 3^5-3, ... n^5-n.

Find the smallest positive integer N such that N/2 is a perfect cube, N/3 is a perfect fifth power and N/5 is a perfect seventh power.

The nth term of a sequence is given by the formula n^3 + 11n . Find the first four terms of the sequence given by this formula and the first term of the sequence which is bigger than one million. . . .

Show that if you add 1 to the product of four consecutive numbers the answer is ALWAYS a perfect square.

If you know the sizes of the angles marked with coloured dots in this diagram which angles can you find by calculation?

The country Sixtania prints postage stamps with only three values 6 lucres, 10 lucres and 15 lucres (where the currency is in lucres).Which values cannot be made up with combinations of these postage. . . .

The first of two articles on Pythagorean Triples which asks how many right angled triangles can you find with the lengths of each side exactly a whole number measurement. Try it!

Some diagrammatic 'proofs' of algebraic identities and inequalities.

This is the second article on right-angled triangles whose edge lengths are whole numbers.

Some puzzles requiring no knowledge of knot theory, just a careful inspection of the patterns. A glimpse of the classification of knots and a little about prime knots, crossing numbers and. . . .

This article discusses how every Pythagorean triple (a, b, c) can be illustrated by a square and an L shape within another square. You are invited to find some triples for yourself.

Patterns that repeat in a line are strangely interesting. How many types are there and how do you tell one type from another?

In this 7-sandwich: 7 1 3 1 6 4 3 5 7 2 4 6 2 5 there are 7 numbers between the 7s, 6 between the 6s etc. The article shows which values of n can make n-sandwiches and which cannot.

Points A, B and C are the centres of three circles, each one of which touches the other two. Prove that the perimeter of the triangle ABC is equal to the diameter of the largest circle.

It is obvious that we can fit four circles of diameter 1 unit in a square of side 2 without overlapping. What is the smallest square into which we can fit 3 circles of diameter 1 unit?

Prove that the shaded area of the semicircle is equal to the area of the inner circle.

Can you visualise whether these nets fold up into 3D shapes? Watch the videos each time to see if you were correct.

What is the largest number of intersection points that a triangle and a quadrilateral can have?

When is it impossible to make number sandwiches?