Resources tagged with: Mathematical reasoning & proof

Filter by: Content type:
Age range:
Challenge level:

There are 160 results

Broad Topics > Thinking Mathematically > Mathematical reasoning & proof

Multiplication Square

Age 14 to 16
Challenge Level

Pick a square within a multiplication square and add the numbers on each diagonal. What do you notice?

Janine's Conjecture

Age 14 to 16
Challenge Level

Janine noticed, while studying some cube numbers, that if you take three consecutive whole numbers and multiply them together and then add the middle number of the three, you get the middle number. . . .

The Triangle Game

Age 11 to 16
Challenge Level

Can you discover whether this is a fair game?

Top-heavy Pyramids

Age 11 to 14
Challenge Level

Use the numbers in the box below to make the base of a top-heavy pyramid whose top number is 200.

AMGM

Age 14 to 16
Challenge Level

Can you use the diagram to prove the AM-GM inequality?

9 Weights

Age 11 to 14
Challenge Level

You have been given nine weights, one of which is slightly heavier than the rest. Can you work out which weight is heavier in just two weighings of the balance?

Tower of Hanoi

Age 11 to 14
Challenge Level

The Tower of Hanoi is an ancient mathematical challenge. Working on the building blocks may help you to explain the patterns you notice.

Chocolate Maths

Age 11 to 14
Challenge Level

Pick the number of times a week that you eat chocolate. This number must be more than one but less than ten. Multiply this number by 2. Add 5 (for Sunday). Multiply by 50... Can you explain why it. . . .

Aba

Age 11 to 14
Challenge Level

In the following sum the letters A, B, C, D, E and F stand for six distinct digits. Find all the ways of replacing the letters with digits so that the arithmetic is correct.

Even So

Age 11 to 14
Challenge Level

Find some triples of whole numbers a, b and c such that a^2 + b^2 + c^2 is a multiple of 4. Is it necessarily the case that a, b and c must all be even? If so, can you explain why?

One O Five

Age 11 to 14
Challenge Level

You can work out the number someone else is thinking of as follows. Ask a friend to think of any natural number less than 100. Then ask them to tell you the remainders when this number is divided by. . . .

DOTS Division

Age 14 to 16
Challenge Level

Take any pair of two digit numbers x=ab and y=cd where, without loss of generality, ab > cd . Form two 4 digit numbers r=abcd and s=cdab and calculate: {r^2 - s^2} /{x^2 - y^2}.

Dicing with Numbers

Age 11 to 14
Challenge Level

In how many ways can you arrange three dice side by side on a surface so that the sum of the numbers on each of the four faces (top, bottom, front and back) is equal?

Is it Magic or Is it Maths?

Age 11 to 14
Challenge Level

Here are three 'tricks' to amaze your friends. But the really clever trick is explaining to them why these 'tricks' are maths not magic. Like all good magicians, you should practice by trying. . . .

Disappearing Square

Age 11 to 14
Challenge Level

Do you know how to find the area of a triangle? You can count the squares. What happens if we turn the triangle on end? Press the button and see. Try counting the number of units in the triangle now. . . .

More Mathematical Mysteries

Age 11 to 14
Challenge Level

Write down a three-digit number Change the order of the digits to get a different number Find the difference between the two three digit numbers Follow the rest of the instructions then try. . . .

Yih or Luk Tsut K'i or Three Men's Morris

Age 11 to 18
Challenge Level

Some puzzles requiring no knowledge of knot theory, just a careful inspection of the patterns. A glimpse of the classification of knots and a little about prime knots, crossing numbers and. . . .

Postage

Age 14 to 16
Challenge Level

The country Sixtania prints postage stamps with only three values 6 lucres, 10 lucres and 15 lucres (where the currency is in lucres).Which values cannot be made up with combinations of these postage. . . .

Mindreader

Age 11 to 14
Challenge Level

A little bit of algebra explains this 'magic'. Ask a friend to pick 3 consecutive numbers and to tell you a multiple of 3. Then ask them to add the four numbers and multiply by 67, and to tell you. . . .

Go Forth and Generalise

Age 11 to 14

Spotting patterns can be an important first step - explaining why it is appropriate to generalise is the next step, and often the most interesting and important.

Gabriel's Problem

Age 11 to 14
Challenge Level

Gabriel multiplied together some numbers and then erased them. Can you figure out where each number was?

What Numbers Can We Make Now?

Age 11 to 14
Challenge Level

Imagine we have four bags containing numbers from a sequence. What numbers can we make now?

Sticky Numbers

Age 11 to 14
Challenge Level

Can you arrange the numbers 1 to 17 in a row so that each adjacent pair adds up to a square number?

Seven Squares - Group-worthy Task

Age 11 to 14
Challenge Level

Choose a couple of the sequences. Try to picture how to make the next, and the next, and the next... Can you describe your reasoning?

Tourism

Age 11 to 14
Challenge Level

If you can copy a network without lifting your pen off the paper and without drawing any line twice, then it is traversable. Decide which of these diagrams are traversable.

The Great Weights Puzzle

Age 14 to 16
Challenge Level

You have twelve weights, one of which is different from the rest. Using just 3 weighings, can you identify which weight is the odd one out, and whether it is heavier or lighter than the rest?

Eleven

Age 11 to 14
Challenge Level

Replace each letter with a digit to make this addition correct.

More Number Pyramids

Age 11 to 14
Challenge Level

When number pyramids have a sequence on the bottom layer, some interesting patterns emerge...

Picture Story

Age 14 to 16
Challenge Level

Can you see how this picture illustrates the formula for the sum of the first six cube numbers?

Cross-country Race

Age 14 to 16
Challenge Level

Eight children enter the autumn cross-country race at school. How many possible ways could they come in at first, second and third places?

Adding All Nine

Age 11 to 14
Challenge Level

Make a set of numbers that use all the digits from 1 to 9, once and once only. Add them up. The result is divisible by 9. Add each of the digits in the new number. What is their sum? Now try some. . . .

Composite Notions

Age 14 to 16
Challenge Level

A composite number is one that is neither prime nor 1. Show that 10201 is composite in any base.

Königsberg

Age 11 to 14
Challenge Level

Can you cross each of the seven bridges that join the north and south of the river to the two islands, once and once only, without retracing your steps?

What Numbers Can We Make?

Age 11 to 14
Challenge Level

Imagine we have four bags containing a large number of 1s, 4s, 7s and 10s. What numbers can we make?

Ordered Sums

Age 14 to 16
Challenge Level

Let a(n) be the number of ways of expressing the integer n as an ordered sum of 1's and 2's. Let b(n) be the number of ways of expressing n as an ordered sum of integers greater than 1. (i) Calculate. . . .

Geometric Parabola

Age 14 to 16
Challenge Level

Explore what happens when you draw graphs of quadratic equations with coefficients based on a geometric sequence.

Clocked

Age 11 to 14
Challenge Level

Is it possible to rearrange the numbers 1,2......12 around a clock face in such a way that every two numbers in adjacent positions differ by any of 3, 4 or 5 hours?

Concrete Wheel

Age 11 to 14
Challenge Level

A huge wheel is rolling past your window. What do you see?

Mediant Madness

Age 14 to 16
Challenge Level

Kyle and his teacher disagree about his test score - who is right?

Convex Polygons

Age 11 to 14
Challenge Level

Show that among the interior angles of a convex polygon there cannot be more than three acute angles.

Natural Sum

Age 14 to 16
Challenge Level

The picture illustrates the sum 1 + 2 + 3 + 4 = (4 x 5)/2. Prove the general formula for the sum of the first n natural numbers and the formula for the sum of the cubes of the first n natural. . . .

A Biggy

Age 14 to 16
Challenge Level

Find the smallest positive integer N such that N/2 is a perfect cube, N/3 is a perfect fifth power and N/5 is a perfect seventh power.

Our Ages

Age 14 to 16
Challenge Level

I am exactly n times my daughter's age. In m years I shall be ... How old am I?

Power Mad!

Age 11 to 14
Challenge Level

Powers of numbers behave in surprising ways. Take a look at some of these and try to explain why they are true.

Elevenses

Age 11 to 14
Challenge Level

How many pairs of numbers can you find that add up to a multiple of 11? Do you notice anything interesting about your results?

Children at Large

Age 11 to 14
Challenge Level

There are four children in a family, two girls, Kate and Sally, and two boys, Tom and Ben. How old are the children?

Mod 3

Age 14 to 16
Challenge Level

Prove that if a^2+b^2 is a multiple of 3 then both a and b are multiples of 3.

Sprouts Explained

Age 7 to 18

This article invites you to get familiar with a strategic game called "sprouts". The game is simple enough for younger children to understand, and has also provided experienced mathematicians with. . . .

Common Divisor

Age 14 to 16
Challenge Level

Find the largest integer which divides every member of the following sequence: 1^5-1, 2^5-2, 3^5-3, ... n^5-n.

Perfectly Square

Age 14 to 16
Challenge Level

The sums of the squares of three related numbers is also a perfect square - can you explain why?