Four jewellers share their stock. Can you work out the relative values of their gems?

There are four children in a family, two girls, Kate and Sally, and two boys, Tom and Ben. How old are the children?

Consider the equation 1/a + 1/b + 1/c = 1 where a, b and c are natural numbers and 0 < a < b < c. Prove that there is only one set of values which satisfy this equation.

Take any rectangle ABCD such that AB > BC. The point P is on AB and Q is on CD. Show that there is exactly one position of P and Q such that APCQ is a rhombus.

The first of two articles on Pythagorean Triples which asks how many right angled triangles can you find with the lengths of each side exactly a whole number measurement. Try it!

If you know the sizes of the angles marked with coloured dots in this diagram which angles can you find by calculation?

Here are three 'tricks' to amaze your friends. But the really clever trick is explaining to them why these 'tricks' are maths not magic. Like all good magicians, you should practice by trying. . . .

Spotting patterns can be an important first step - explaining why it is appropriate to generalise is the next step, and often the most interesting and important.

If you can copy a network without lifting your pen off the paper and without drawing any line twice, then it is traversable. Decide which of these diagrams are traversable.

Write down a three-digit number Change the order of the digits to get a different number Find the difference between the two three digit numbers Follow the rest of the instructions then try. . . .

Pick a square within a multiplication square and add the numbers on each diagonal. What do you notice?

Is the mean of the squares of two numbers greater than, or less than, the square of their means?

This is the second article on right-angled triangles whose edge lengths are whole numbers.

Three points A, B and C lie in this order on a line, and P is any point in the plane. Use the Cosine Rule to prove the following statement.

Can you make sense of these three proofs of Pythagoras' Theorem?

Do you know how to find the area of a triangle? You can count the squares. What happens if we turn the triangle on end? Press the button and see. Try counting the number of units in the triangle now. . . .

Six points are arranged in space so that no three are collinear. How many line segments can be formed by joining the points in pairs?

There are 12 identical looking coins, one of which is a fake. The counterfeit coin is of a different weight to the rest. What is the minimum number of weighings needed to locate the fake coin?

What is the largest number of intersection points that a triangle and a quadrilateral can have?

I want some cubes painted with three blue faces and three red faces. How many different cubes can be painted like that?

When is it impossible to make number sandwiches?

Eight children enter the autumn cross-country race at school. How many possible ways could they come in at first, second and third places?

Clearly if a, b and c are the lengths of the sides of an equilateral triangle then a^2 + b^2 + c^2 = ab + bc + ca. Is the converse true?

Arrange the numbers 1 to 16 into a 4 by 4 array. Choose a number. Cross out the numbers on the same row and column. Repeat this process. Add up you four numbers. Why do they always add up to 34?

I start with a red, a blue, a green and a yellow marble. I can trade any of my marbles for three others, one of each colour. Can I end up with exactly two marbles of each colour?

I start with a red, a green and a blue marble. I can trade any of my marbles for two others, one of each colour. Can I end up with five more blue marbles than red after a number of such trades?

Whenever two chameleons of different colours meet they change colour to the third colour. Describe the shortest sequence of meetings in which all the chameleons change to green if you start with 12. . . .

Take any pair of two digit numbers x=ab and y=cd where, without loss of generality, ab > cd . Form two 4 digit numbers r=abcd and s=cdab and calculate: {r^2 - s^2} /{x^2 - y^2}.

Can you see how this picture illustrates the formula for the sum of the first six cube numbers?

A huge wheel is rolling past your window. What do you see?

The picture illustrates the sum 1 + 2 + 3 + 4 = (4 x 5)/2. Prove the general formula for the sum of the first n natural numbers and the formula for the sum of the cubes of the first n natural. . . .

Show that if you add 1 to the product of four consecutive numbers the answer is ALWAYS a perfect square.

Janine noticed, while studying some cube numbers, that if you take three consecutive whole numbers and multiply them together and then add the middle number of the three, you get the middle number. . . .

The country Sixtania prints postage stamps with only three values 6 lucres, 10 lucres and 15 lucres (where the currency is in lucres).Which values cannot be made up with combinations of these postage. . . .

It is impossible to trisect an angle using only ruler and compasses but it can be done using a carpenter's square.

Caroline and James pick sets of five numbers. Charlie chooses three of them that add together to make a multiple of three. Can they stop him?

I am exactly n times my daughter's age. In m years I shall be ... How old am I?

Use the numbers in the box below to make the base of a top-heavy pyramid whose top number is 200.

You have twelve weights, one of which is different from the rest. Using just 3 weighings, can you identify which weight is the odd one out, and whether it is heavier or lighter than the rest?

Gabriel multiplied together some numbers and then erased them. Can you figure out where each number was?

Can you make sense of the three methods to work out the area of the kite in the square?

Imagine we have four bags containing numbers from a sequence. What numbers can we make now?

Construct two equilateral triangles on a straight line. There are two lengths that look the same - can you prove it?

Imagine we have four bags containing a large number of 1s, 4s, 7s and 10s. What numbers can we make?

Can you arrange the numbers 1 to 17 in a row so that each adjacent pair adds up to a square number?

What fractions can you divide the diagonal of a square into by simple folding?

How many pairs of numbers can you find that add up to a multiple of 11? Do you notice anything interesting about your results?

Choose a couple of the sequences. Try to picture how to make the next, and the next, and the next... Can you describe your reasoning?