Resources tagged with: Mathematical reasoning & proof

Filter by: Content type:
Age range:
Challenge level:

There are 160 results

Broad Topics > Thinking Mathematically > Mathematical reasoning & proof

Königsberg

Age 11 to 14
Challenge Level

Can you cross each of the seven bridges that join the north and south of the river to the two islands, once and once only, without retracing your steps?

Konigsberg Plus

Age 11 to 14
Challenge Level

Euler discussed whether or not it was possible to stroll around Koenigsberg crossing each of its seven bridges exactly once. Experiment with different numbers of islands and bridges.

Pattern of Islands

Age 11 to 14
Challenge Level

In how many distinct ways can six islands be joined by bridges so that each island can be reached from every other island...

Tourism

Age 11 to 14
Challenge Level

If you can copy a network without lifting your pen off the paper and without drawing any line twice, then it is traversable. Decide which of these diagrams are traversable.

Knight Defeated

Age 14 to 16
Challenge Level

The knight's move on a chess board is 2 steps in one direction and one step in the other direction. Prove that a knight cannot visit every square on the board once and only (a tour) on a 2 by n board. . . .

Tri-colour

Age 11 to 14
Challenge Level

Six points are arranged in space so that no three are collinear. How many line segments can be formed by joining the points in pairs?

Geometry and Gravity 2

Age 11 to 18

This is the second of two articles and discusses problems relating to the curvature of space, shortest distances on surfaces, triangulations of surfaces and representation by graphs.

Flight of the Flibbins

Age 11 to 14
Challenge Level

Blue Flibbins are so jealous of their red partners that they will not leave them on their own with any other bue Flibbin. What is the quickest way of getting the five pairs of Flibbins safely to. . . .

Sprouts Explained

Age 7 to 18

This article invites you to get familiar with a strategic game called "sprouts". The game is simple enough for younger children to understand, and has also provided experienced mathematicians with. . . .

Some Circuits in Graph or Network Theory

Age 14 to 18

Eulerian and Hamiltonian circuits are defined with some simple examples and a couple of puzzles to illustrate Hamiltonian circuits.

Classifying Solids Using Angle Deficiency

Age 11 to 16
Challenge Level

Toni Beardon has chosen this article introducing a rich area for practical exploration and discovery in 3D geometry

Symmetric Tangles

Age 14 to 16

The tangles created by the twists and turns of the Conway rope trick are surprisingly symmetrical. Here's why!

How Many Dice?

Age 11 to 14
Challenge Level

A standard die has the numbers 1, 2 and 3 are opposite 6, 5 and 4 respectively so that opposite faces add to 7? If you make standard dice by writing 1, 2, 3, 4, 5, 6 on blank cubes you will find. . . .

Greetings

Age 11 to 14
Challenge Level

From a group of any 4 students in a class of 30, each has exchanged Christmas cards with the other three. Show that some students have exchanged cards with all the other students in the class. How. . . .

Ordered Sums

Age 14 to 16
Challenge Level

Let a(n) be the number of ways of expressing the integer n as an ordered sum of 1's and 2's. Let b(n) be the number of ways of expressing n as an ordered sum of integers greater than 1. (i) Calculate. . . .

Yih or Luk Tsut K'i or Three Men's Morris

Age 11 to 18
Challenge Level

Some puzzles requiring no knowledge of knot theory, just a careful inspection of the patterns. A glimpse of the classification of knots and a little about prime knots, crossing numbers and. . . .

Russian Cubes

Age 14 to 16
Challenge Level

I want some cubes painted with three blue faces and three red faces. How many different cubes can be painted like that?

Advent Calendar 2011 - Secondary

Age 11 to 18
Challenge Level

Advent Calendar 2011 - a mathematical activity for each day during the run-up to Christmas.

Doodles

Age 14 to 16
Challenge Level

Draw a 'doodle' - a closed intersecting curve drawn without taking pencil from paper. What can you prove about the intersections?

Children at Large

Age 11 to 14
Challenge Level

There are four children in a family, two girls, Kate and Sally, and two boys, Tom and Ben. How old are the children?

Cross-country Race

Age 14 to 16
Challenge Level

Eight children enter the autumn cross-country race at school. How many possible ways could they come in at first, second and third places?

More Number Pyramids

Age 11 to 14
Challenge Level

When number pyramids have a sequence on the bottom layer, some interesting patterns emerge...

Disappearing Square

Age 11 to 14
Challenge Level

Do you know how to find the area of a triangle? You can count the squares. What happens if we turn the triangle on end? Press the button and see. Try counting the number of units in the triangle now. . . .

1 Step 2 Step

Age 11 to 14
Challenge Level

Liam's house has a staircase with 12 steps. He can go down the steps one at a time or two at time. In how many different ways can Liam go down the 12 steps?

Natural Sum

Age 14 to 16
Challenge Level

The picture illustrates the sum 1 + 2 + 3 + 4 = (4 x 5)/2. Prove the general formula for the sum of the first n natural numbers and the formula for the sum of the cubes of the first n natural. . . .

Dicing with Numbers

Age 11 to 14
Challenge Level

In how many ways can you arrange three dice side by side on a surface so that the sum of the numbers on each of the four faces (top, bottom, front and back) is equal?

Not Necessarily in That Order

Age 11 to 14
Challenge Level

Baker, Cooper, Jones and Smith are four people whose occupations are teacher, welder, mechanic and programmer, but not necessarily in that order. What is each person’s occupation?

Go Forth and Generalise

Age 11 to 14

Spotting patterns can be an important first step - explaining why it is appropriate to generalise is the next step, and often the most interesting and important.

More Number Sandwiches

Age 11 to 16
Challenge Level

When is it impossible to make number sandwiches?

Postage

Age 14 to 16
Challenge Level

The country Sixtania prints postage stamps with only three values 6 lucres, 10 lucres and 15 lucres (where the currency is in lucres).Which values cannot be made up with combinations of these postage. . . .

The Triangle Game

Age 11 to 16
Challenge Level

Can you discover whether this is a fair game?

One O Five

Age 11 to 14
Challenge Level

You can work out the number someone else is thinking of as follows. Ask a friend to think of any natural number less than 100. Then ask them to tell you the remainders when this number is divided by. . . .

Triangular Intersection

Age 14 to 16 Short
Challenge Level

What is the largest number of intersection points that a triangle and a quadrilateral can have?

Find the Fake

Age 14 to 16
Challenge Level

There are 12 identical looking coins, one of which is a fake. The counterfeit coin is of a different weight to the rest. What is the minimum number of weighings needed to locate the fake coin?

Seven Squares - Group-worthy Task

Age 11 to 14
Challenge Level

Choose a couple of the sequences. Try to picture how to make the next, and the next, and the next... Can you describe your reasoning?

Clocked

Age 11 to 14
Challenge Level

Is it possible to rearrange the numbers 1,2......12 around a clock face in such a way that every two numbers in adjacent positions differ by any of 3, 4 or 5 hours?

Marbles

Age 11 to 14
Challenge Level

I start with a red, a green and a blue marble. I can trade any of my marbles for two others, one of each colour. Can I end up with five more blue marbles than red after a number of such trades?

Picture Story

Age 14 to 16
Challenge Level

Can you see how this picture illustrates the formula for the sum of the first six cube numbers?

Chameleons

Age 11 to 14
Challenge Level

Whenever two chameleons of different colours meet they change colour to the third colour. Describe the shortest sequence of meetings in which all the chameleons change to green if you start with 12. . . .

More Marbles

Age 11 to 14
Challenge Level

I start with a red, a blue, a green and a yellow marble. I can trade any of my marbles for three others, one of each colour. Can I end up with exactly two marbles of each colour?

Multiplication Square

Age 14 to 16
Challenge Level

Pick a square within a multiplication square and add the numbers on each diagonal. What do you notice?

Concrete Wheel

Age 11 to 14
Challenge Level

A huge wheel is rolling past your window. What do you see?

Janine's Conjecture

Age 14 to 16
Challenge Level

Janine noticed, while studying some cube numbers, that if you take three consecutive whole numbers and multiply them together and then add the middle number of the three, you get the middle number. . . .

Convex Polygons

Age 11 to 14
Challenge Level

Show that among the interior angles of a convex polygon there cannot be more than three acute angles.

AMGM

Age 14 to 16
Challenge Level

Can you use the diagram to prove the AM-GM inequality?

A Long Time at the Till

Age 14 to 18
Challenge Level

Try to solve this very difficult problem and then study our two suggested solutions. How would you use your knowledge to try to solve variants on the original problem?

Tower of Hanoi

Age 11 to 14
Challenge Level

The Tower of Hanoi is an ancient mathematical challenge. Working on the building blocks may help you to explain the patterns you notice.

Problem Solving, Using and Applying and Functional Mathematics

Age 5 to 18
Challenge Level

Problem solving is at the heart of the NRICH site. All the problems give learners opportunities to learn, develop or use mathematical concepts and skills. Read here for more information.

Impossible Sandwiches

Age 11 to 18

In this 7-sandwich: 7 1 3 1 6 4 3 5 7 2 4 6 2 5 there are 7 numbers between the 7s, 6 between the 6s etc. The article shows which values of n can make n-sandwiches and which cannot.

Magic Squares II

Age 14 to 18

An article which gives an account of some properties of magic squares.