There are **60** NRICH Mathematical resources connected to **Place value**, you may find related items under The Number System and Place Value.

Try out some calculations. Are you surprised by the results?

Powers of numbers behave in surprising ways. Take a look at some of these and try to explain why they are true.

Watch our videos of multiplication methods that you may not have met before. Can you make sense of them?

In this 100 square, look at the green square which contains the numbers 2, 3, 12 and 13. What is the sum of the numbers that are diagonally opposite each other? What do you notice?

How many more miles must the car travel before the numbers on the milometer and the trip meter contain the same digits in the same order?

Can you show that 1^99 + 2^99 + 3^99 + 4^99 + 5^99 is divisible by 5?

How many six digit numbers are there which DO NOT contain a 5?

Think of two whole numbers under 10, and follow the steps. I can work out both your numbers very quickly. How?

Choose four different digits from 1-9 and put one in each box so that the resulting four two-digit numbers add to a total of 100.

Can you convince me of each of the following: If a square number is multiplied by a square number the product is ALWAYS a square number...

How many solutions can you find to this sum? Each of the different letters stands for a different number.

Can you explain the surprising results Jo found when she calculated the difference between square numbers?

Take any four digit number. Move the first digit to the end and move the rest along. Now add your two numbers. Did you get a multiple of 11?

Three people chose this as a favourite problem. It is the sort of problem that needs thinking time - but once the connection is made it gives access to many similar ideas.

A 2-Digit number is squared. When this 2-digit number is reversed and squared, the difference between the squares is also a square. What is the 2-digit number?

The Number Jumbler can always work out your chosen symbol. Can you work out how?

Where should you start, if you want to finish back where you started?

Some Games That May Be Nice or Nasty for an adult and child. Use your knowledge of place value to beat your opponent.

Think of a two digit number, reverse the digits, and add the numbers together. Something special happens...

Using balancing scales what is the least number of weights needed to weigh all integer masses from 1 to 1000? Placing some of the weights in the same pan as the object how many are needed?

This article for the young and old talks about the origins of our number system and the important role zero has to play in it.

This article, written for teachers, looks at the different kinds of recordings encountered in Primary Mathematics lessons and the importance of not jumping to conclusions!

Nowadays the calculator is very familiar to many of us. What did people do to save time working out more difficult problems before the calculator existed?

Each letter represents a different positive digit AHHAAH / JOKE = HA What are the values of each of the letters?

Given any 3 digit number you can use the given digits and name another number which is divisible by 37 (e.g. given 628 you say 628371 is divisible by 37 because you know that 6+3 = 2+7 = 8+1 = 9). . . .

A composite number is one that is neither prime nor 1. Show that 10201 is composite in any base.

Can you arrange the digits 1,2,3,4,5,6,7,8,9 into three 3-digit numbers such that their total is close to 1500?

Explore the factors of the numbers which are written as 10101 in different number bases. Prove that the numbers 10201, 11011 and 10101 are composite in any base.

A three digit number abc is always divisible by 7 when 2a+3b+c is divisible by 7. Why?

Think of any three-digit number. Repeat the digits. The 6-digit number that you end up with is divisible by 91. Is this a coincidence?

We are used to writing numbers in base ten, using 0, 1, 2, 3, 4, 5, 6, 7, 8, and 9. Eg. 75 means 7 tens and five units. This article explains how numbers can be written in any number base.

There are two forms of counting on Vuvv - Zios count in base 3 and Zepts count in base 7. One day four of these creatures, two Zios and two Zepts, sat on the summit of a hill to count the legs of. . . .

Write down a three-digit number Change the order of the digits to get a different number Find the difference between the two three digit numbers Follow the rest of the instructions then try. . . .

Visitors to Earth from the distant planet of Zub-Zorna were amazed when they found out that when the digits in this multiplication were reversed, the answer was the same! Find a way to explain. . . .

Replace the letters with numbers to make the addition work out correctly. R E A D + T H I S = P A G E

When the number x 1 x x x is multiplied by 417 this gives the answer 9 x x x 0 5 7. Find the missing digits, each of which is represented by an "x" .

115^2 = (110 x 120) + 25, that is 13225 895^2 = (890 x 900) + 25, that is 801025 Can you explain what is happening and generalise?

Find the five distinct digits N, R, I, C and H in the following nomogram

The number 3723(in base 10) is written as 123 in another base. What is that base?

This addition sum uses all ten digits 0, 1, 2...9 exactly once. Find the sum and show that the one you give is the only possibility.

Pick the number of times a week that you eat chocolate. This number must be more than one but less than ten. Multiply this number by 2. Add 5 (for Sunday). Multiply by 50... Can you explain why it. . . .

The letters in the following addition sum represent the digits 1 ... 9. If A=3 and D=2, what number is represented by "CAYLEY"?

32 x 38 = 30 x 40 + 2 x 8; 34 x 36 = 30 x 40 + 4 x 6; 56 x 54 = 50 x 60 + 6 x 4; 73 x 77 = 70 x 80 + 3 x 7 Verify and generalise if possible.

If a two digit number has its digits reversed and the smaller of the two numbers is subtracted from the larger, prove the difference can never be prime.

The number 27 is special because it is three times the sum of its digits 27 = 3 (2 + 7). Find some two digit numbers that are SEVEN times the sum of their digits (seven-up numbers)?

Suppose you had to begin the never ending task of writing out the natural numbers: 1, 2, 3, 4, 5.... and so on. What would be the 1000th digit you would write down.

Consider all two digit numbers (10, 11, . . . ,99). In writing down all these numbers, which digits occur least often, and which occur most often ? What about three digit numbers, four digit numbers. . . .