Choose four different digits from 1-9 and put one in each box so that the resulting four two-digit numbers add to a total of 100.

How many solutions can you find to this sum? Each of the different letters stands for a different number.

The letters in the following addition sum represent the digits 1 ... 9. If A=3 and D=2, what number is represented by "CAYLEY"?

Find the values of the nine letters in the sum: FOOT + BALL = GAME

Replace the letters with numbers to make the addition work out correctly. R E A D + T H I S = P A G E

A game to be played against the computer, or in groups. Pick a 7-digit number. A random digit is generated. What must you subract to remove the digit from your number? the first to zero wins.

Some Games That May Be Nice or Nasty for an adult and child. Use your knowledge of place value to beat your opponent.

This multiplication uses each of the digits 0 - 9 once and once only. Using the information given, can you replace the stars in the calculation with figures?

There are six numbers written in five different scripts. Can you sort out which is which?

Each child in Class 3 took four numbers out of the bag. Who had made the highest even number?

Start by putting one million (1 000 000) into the display of your calculator. Can you reduce this to 7 using just the 7 key and add, subtract, multiply, divide and equals as many times as you like?

A school song book contains 700 songs. The numbers of the songs are displayed by combining special small single-digit cards. What is the minimum number of small cards that is needed?

This addition sum uses all ten digits 0, 1, 2...9 exactly once. Find the sum and show that the one you give is the only possibility.

Number problems at primary level that require careful consideration.

Number problems for inquiring primary learners.

Use two dice to generate two numbers with one decimal place. What happens when you round these numbers to the nearest whole number?

In this 100 square, look at the green square which contains the numbers 2, 3, 12 and 13. What is the sum of the numbers that are diagonally opposite each other? What do you notice?

This 100 square jigsaw is written in code. It starts with 1 and ends with 100. Can you build it up?

Can you work out some different ways to balance this equation?

Can you replace the letters with numbers? Is there only one solution in each case?

Can you complete this calculation by filling in the missing numbers? In how many different ways can you do it?

Dicey Operations for an adult and child. Can you get close to 1000 than your partner?

What is the sum of all the digits in all the integers from one to one million?

What happens when you round these numbers to the nearest whole number?

What happens when you round these three-digit numbers to the nearest 100?

Can you arrange the digits 1,2,3,4,5,6,7,8,9 into three 3-digit numbers such that their total is close to 1500?

Try out some calculations. Are you surprised by the results?

Have a go at balancing this equation. Can you find different ways of doing it?

Try out this number trick. What happens with different starting numbers? What do you notice?

What do the digits in the number fifteen add up to? How many other numbers have digits with the same total but no zeros?

Pick the number of times a week that you eat chocolate. This number must be more than one but less than ten. Multiply this number by 2. Add 5 (for Sunday). Multiply by 50... Can you explain why it. . . .

Can you substitute numbers for the letters in these sums?

Find the sum of all three-digit numbers each of whose digits is odd.

In the multiplication calculation, some of the digits have been replaced by letters and others by asterisks. Can you reconstruct the original multiplication?

Number problems at primary level to work on with others.

Investigate the different ways these aliens count in this challenge. You could start by thinking about how each of them would write our number 7.

Number problems at primary level that may require resilience.

Four of these clues are needed to find the chosen number on this grid and four are true but do nothing to help in finding the number. Can you sort out the clues and find the number?

Take any four digit number. Move the first digit to the end and move the rest along. Now add your two numbers. Did you get a multiple of 11?

The number 27 is special because it is three times the sum of its digits 27 = 3 (2 + 7). Find some two digit numbers that are SEVEN times the sum of their digits (seven-up numbers)?

Powers of numbers behave in surprising ways. Take a look at some of these and try to explain why they are true.

Consider all two digit numbers (10, 11, . . . ,99). In writing down all these numbers, which digits occur least often, and which occur most often ? What about three digit numbers, four digit numbers. . . .

Becky created a number plumber which multiplies by 5 and subtracts 4. What do you notice about the numbers that it produces? Can you explain your findings?

Think of a two digit number, reverse the digits, and add the numbers together. Something special happens...

The Number Jumbler can always work out your chosen symbol. Can you work out how?

The number 3723(in base 10) is written as 123 in another base. What is that base?

Which is quicker, counting up to 30 in ones or counting up to 300 in tens? Why?