An environment that enables you to investigate tessellations of regular polygons

A right-angled isosceles triangle is rotated about the centre point of a square. What can you say about the area of the part of the square covered by the triangle as it rotates?

Semi-regular tessellations combine two or more different regular polygons to fill the plane. Can you find all the semi-regular tessellations?

Six circles around a central circle make a flower. Watch the flower as you change the radii in this circle packing. Prove that with the given ratios of the radii the petals touch and fit perfectly.

This game challenges you to locate hidden triangles in The White Box by firing rays and observing where the rays exit the Box.

Can you beat Piggy in this simple dice game? Can you figure out Piggy's strategy, and is there a better one?

Can you use small coloured cubes to make a 3 by 3 by 3 cube so that each face of the bigger cube contains one of each colour?

A simple spinner that is equally likely to land on Red or Black. Useful if tossing a coin, dropping it, and rummaging about on the floor have lost their appeal. Needs a modern browser; if IE then at. . . .

There are 27 small cubes in a 3 x 3 x 3 cube, 54 faces being visible at any one time. Is it possible to reorganise these cubes so that by dipping the large cube into a pot of paint three times you. . . .

Prove Pythagoras' Theorem using enlargements and scale factors.

Use an Excel to investigate division. Explore the relationships between the process elements using an interactive spreadsheet.

The opposite vertices of a square have coordinates (a,b) and (c,d). What are the coordinates of the other vertices?

Use this animation to experiment with lotteries. Choose how many balls to match, how many are in the carousel, and how many draws to make at once.

Charlie likes tablecloths that use as many colours as possible, but insists that his tablecloths have some symmetry. Can you work out how many colours he needs for different tablecloth designs?

If you continue the pattern, can you predict what each of the following areas will be? Try to explain your prediction.

Can you put the 25 coloured tiles into the 5 x 5 square so that no column, no row and no diagonal line have tiles of the same colour in them?

To avoid losing think of another very well known game where the patterns of play are similar.

Here is a chance to play a fractions version of the classic Countdown Game.

The aim of the game is to slide the green square from the top right hand corner to the bottom left hand corner in the least number of moves.

in how many ways can you place the numbers 1, 2, 3 … 9 in the nine regions of the Olympic Emblem (5 overlapping circles) so that the amount in each ring is the same?

Ask a friend to choose a number between 1 and 63. By identifying which of the six cards contains the number they are thinking of it is easy to tell them what the number is.

Place a red counter in the top left corner of a 4x4 array, which is covered by 14 other smaller counters, leaving a gap in the bottom right hand corner (HOME). What is the smallest number of moves. . . .

Players take it in turns to choose a dot on the grid. The winner is the first to have four dots that can be joined to form a square.

It is possible to identify a particular card out of a pack of 15 with the use of some mathematical reasoning. What is this reasoning and can it be applied to other numbers of cards?

Can you beat the computer in the challenging strategy game?

Can you find the pairs that represent the same amount of money?

This set of resources for teachers offers interactive environments to support work on loci at Key Stage 4.

How good are you at finding the formula for a number pattern ?

Find all the ways of placing the numbers 1 to 9 on a W shape, with 3 numbers on each leg, so that each set of 3 numbers has the same total.

Use Excel to explore multiplication of fractions.

Given the nets of 4 cubes with the faces coloured in 4 colours, build a tower so that on each vertical wall no colour is repeated, that is all 4 colours appear.

A group of interactive resources to support work on percentages Key Stage 4.

P is a point on the circumference of a circle radius r which rolls, without slipping, inside a circle of radius 2r. What is the locus of P?

An environment that simulates a protractor carrying a right- angled triangle of unit hypotenuse.

An Excel spreadsheet with an investigation.

Use Excel to practise adding and subtracting fractions.

Use an interactive Excel spreadsheet to investigate factors and multiples.

Use an Excel spreadsheet to explore long multiplication.

Re-arrange the pieces of the puzzle to form a rectangle and then to form an equilateral triangle. Calculate the angles and lengths.

Use an interactive Excel spreadsheet to explore number in this exciting game!

Use Excel to investigate the effect of translations around a number grid.

A simple file for the Interactive whiteboard or PC screen, demonstrating equivalent fractions.

A game in which players take it in turns to choose a number. Can you block your opponent?

The interactive diagram has two labelled points, A and B. It is designed to be used with the problem "Cushion Ball"

Some treasure has been hidden in a three-dimensional grid! Can you work out a strategy to find it as efficiently as possible?

A collection of resources to support work on Factors and Multiples at Secondary level.

This is an interactive net of a Rubik's cube. Twists of the 3D cube become mixes of the squares on the 2D net. Have a play and see how many scrambles you can undo!

Show that for any triangle it is always possible to construct 3 touching circles with centres at the vertices. Is it possible to construct touching circles centred at the vertices of any polygon?