There are 27 small cubes in a 3 x 3 x 3 cube, 54 faces being visible at any one time. Is it possible to reorganise these cubes so that by dipping the large cube into a pot of paint three times you. . . .

Use Excel to explore multiplication of fractions.

A simple file for the Interactive whiteboard or PC screen, demonstrating equivalent fractions.

The interactive diagram has two labelled points, A and B. It is designed to be used with the problem "Cushion Ball"

Players take it in turns to choose a dot on the grid. The winner is the first to have four dots that can be joined to form a square.

Some treasure has been hidden in a three-dimensional grid! Can you work out a strategy to find it as efficiently as possible?

There are nine teddies in Teddy Town - three red, three blue and three yellow. There are also nine houses, three of each colour. Can you put them on the map of Teddy Town according to the rules?

Semi-regular tessellations combine two or more different regular polygons to fill the plane. Can you find all the semi-regular tessellations?

The aim of the game is to slide the green square from the top right hand corner to the bottom left hand corner in the least number of moves.

This set of resources for teachers offers interactive environments to support work on loci at Key Stage 4.

This problem is about investigating whether it is possible to start at one vertex of a platonic solid and visit every other vertex once only returning to the vertex you started at.

Use Excel to investigate the effect of translations around a number grid.

A tilted square is a square with no horizontal sides. Can you devise a general instruction for the construction of a square when you are given just one of its sides?

Use an interactive Excel spreadsheet to explore number in this exciting game!

Use an Excel spreadsheet to explore long multiplication.

An environment that simulates a protractor carrying a right- angled triangle of unit hypotenuse.

A right-angled isosceles triangle is rotated about the centre point of a square. What can you say about the area of the part of the square covered by the triangle as it rotates?

P is a point on the circumference of a circle radius r which rolls, without slipping, inside a circle of radius 2r. What is the locus of P?

Use an Excel to investigate division. Explore the relationships between the process elements using an interactive spreadsheet.

To avoid losing think of another very well known game where the patterns of play are similar.

Place a red counter in the top left corner of a 4x4 array, which is covered by 14 other smaller counters, leaving a gap in the bottom right hand corner (HOME). What is the smallest number of moves. . . .

Can you use small coloured cubes to make a 3 by 3 by 3 cube so that each face of the bigger cube contains one of each colour?

An Excel spreadsheet with an investigation.

Use Excel to practise adding and subtracting fractions.

A and B are two interlocking cogwheels having p teeth and q teeth respectively. One tooth on B is painted red. Find the values of p and q for which the red tooth on B contacts every gap on the. . . .

Use an interactive Excel spreadsheet to investigate factors and multiples.

A circle rolls around the outside edge of a square so that its circumference always touches the edge of the square. Can you describe the locus of the centre of the circle?

Two circles of equal radius touch at P. One circle is fixed whilst the other moves, rolling without slipping, all the way round. How many times does the moving coin revolve before returning to P?

Euler discussed whether or not it was possible to stroll around Koenigsberg crossing each of its seven bridges exactly once. Experiment with different numbers of islands and bridges.

Arrange the four number cards on the grid, according to the rules, to make a diagonal, vertical or horizontal line.

We can show that (x + 1)² = x² + 2x + 1 by considering the area of an (x + 1) by (x + 1) square. Show in a similar way that (x + 2)² = x² + 4x + 4

A game for two people, or play online. Given a target number, say 23, and a range of numbers to choose from, say 1-4, players take it in turns to add to the running total to hit their target.

Can you beat the computer in the challenging strategy game?

Triangular numbers can be represented by a triangular array of squares. What do you notice about the sum of identical triangle numbers?

Can you fill in the mixed up numbers in this dilution calculation?

Can you explain the strategy for winning this game with any target?

A simple spinner that is equally likely to land on Red or Black. Useful if tossing a coin, dropping it, and rummaging about on the floor have lost their appeal. Needs a modern browser; if IE then at. . . .

This game challenges you to locate hidden triangles in The White Box by firing rays and observing where the rays exit the Box.

Here is a chance to play a fractions version of the classic Countdown Game.

Here is a chance to play a version of the classic Countdown Game.

Which dilutions can you make using only 10ml pipettes?

Try entering different sets of numbers in the number pyramids. How does the total at the top change?

How good are you at finding the formula for a number pattern ?

Can you find a relationship between the number of dots on the circle and the number of steps that will ensure that all points are hit?

Can you find the pairs that represent the same amount of money?

Do you know how to find the area of a triangle? You can count the squares. What happens if we turn the triangle on end? Press the button and see. Try counting the number of units in the triangle now. . . .

It is possible to identify a particular card out of a pack of 15 with the use of some mathematical reasoning. What is this reasoning and can it be applied to other numbers of cards?