Find the frequency distribution for ordinary English, and use it to help you crack the code.

Use Excel to explore multiplication of fractions.

Meg and Mo need to hang their marbles so that they balance. Use the interactivity to experiment and find out what they need to do.

A group of interactive resources to support work on percentages Key Stage 4.

Can you fill in the mixed up numbers in this dilution calculation?

Which dilutions can you make using only 10ml pipettes?

Use your skill and knowledge to place various scientific lengths in order of size. Can you judge the length of objects with sizes ranging from 1 Angstrom to 1 million km with no wrong attempts?

This set of resources for teachers offers interactive environments to support work on loci at Key Stage 4.

Meg and Mo still need to hang their marbles so that they balance, but this time the constraints are different. Use the interactivity to experiment and find out what they need to do.

Use an interactive Excel spreadsheet to explore number in this exciting game!

Experiment with the interactivity of "rolling" regular polygons, and explore how the different positions of the red dot affects its speed at each stage.

Experiment with the interactivity of "rolling" regular polygons, and explore how the different positions of the red dot affects the distance it travels at each stage.

Can you find a reliable strategy for choosing coordinates that will locate the treasure in the minimum number of guesses?

The interactive diagram has two labelled points, A and B. It is designed to be used with the problem "Cushion Ball"

Use an Excel to investigate division. Explore the relationships between the process elements using an interactive spreadsheet.

Use Excel to investigate the effect of translations around a number grid.

Experiment with the interactivity of "rolling" regular polygons, and explore how the different positions of the red dot affects its vertical and horizontal movement at each stage.

A simple file for the Interactive whiteboard or PC screen, demonstrating equivalent fractions.

An Excel spreadsheet with an investigation.

Use an Excel spreadsheet to explore long multiplication.

Mo has left, but Meg is still experimenting. Use the interactivity to help you find out how she can alter her pouch of marbles and still keep the two pouches balanced.

An environment that simulates a protractor carrying a right- angled triangle of unit hypotenuse.

Can you spot the similarities between this game and other games you know? The aim is to choose 3 numbers that total 15.

Use Excel to practise adding and subtracting fractions.

Use an interactive Excel spreadsheet to investigate factors and multiples.

Place a red counter in the top left corner of a 4x4 array, which is covered by 14 other smaller counters, leaving a gap in the bottom right hand corner (HOME). What is the smallest number of moves. . . .

It's easy to work out the areas of most squares that we meet, but what if they were tilted?

We can show that (x + 1)² = x² + 2x + 1 by considering the area of an (x + 1) by (x + 1) square. Show in a similar way that (x + 2)² = x² + 4x + 4

Euler discussed whether or not it was possible to stroll around Koenigsberg crossing each of its seven bridges exactly once. Experiment with different numbers of islands and bridges.

Ask a friend to choose a number between 1 and 63. By identifying which of the six cards contains the number they are thinking of it is easy to tell them what the number is.

Two circles of equal radius touch at P. One circle is fixed whilst the other moves, rolling without slipping, all the way round. How many times does the moving coin revolve before returning to P?

A circle rolls around the outside edge of a square so that its circumference always touches the edge of the square. Can you describe the locus of the centre of the circle?

Try entering different sets of numbers in the number pyramids. How does the total at the top change?

Can you explain the strategy for winning this game with any target?

Show how this pentagonal tile can be used to tile the plane and describe the transformations which map this pentagon to its images in the tiling.

The aim of the game is to slide the green square from the top right hand corner to the bottom left hand corner in the least number of moves.

This is an interactivity in which you have to sort the steps in the completion of the square into the correct order to prove the formula for the solutions of quadratic equations.

A red square and a blue square overlap so that the corner of the red square rests on the centre of the blue square. Show that, whatever the orientation of the red square, it covers a quarter of the. . . .

This problem is about investigating whether it is possible to start at one vertex of a platonic solid and visit every other vertex once only returning to the vertex you started at.

To avoid losing think of another very well known game where the patterns of play are similar.

Triangular numbers can be represented by a triangular array of squares. What do you notice about the sum of identical triangle numbers?

When number pyramids have a sequence on the bottom layer, some interesting patterns emerge...

Can you work out which spinners were used to generate the frequency charts?

The computer has made a rectangle and will tell you the number of spots it uses in total. Can you find out where the rectangle is?

How good are you at finding the formula for a number pattern ?

This game challenges you to locate hidden triangles in The White Box by firing rays and observing where the rays exit the Box.

Use this animation to experiment with lotteries. Choose how many balls to match, how many are in the carousel, and how many draws to make at once.

A counter is placed in the bottom right hand corner of a grid. You toss a coin and move the star according to the following rules: ... What is the probability that you end up in the top left-hand. . . .