Semi-regular tessellations combine two or more different regular polygons to fill the plane. Can you find all the semi-regular tessellations?

Can you find triangles on a 9-point circle? Can you work out their angles?

How many times in twelve hours do the hands of a clock form a right angle? Use the interactivity to check your answers.

What is the relationship between the angle at the centre and the angles at the circumference, for angles which stand on the same arc? Can you prove it?

Use Excel to explore multiplication of fractions.

A tilted square is a square with no horizontal sides. Can you devise a general instruction for the construction of a square when you are given just one of its sides?

Use the interactivity to investigate what kinds of triangles can be drawn on peg boards with different numbers of pegs.

Can you find all the different triangles on these peg boards, and find their angles?

Can you make a right-angled triangle on this peg-board by joining up three points round the edge?

Draw some isosceles triangles with an area of $9$cm$^2$ and a vertex at (20,20). If all the vertices must have whole number coordinates, how many is it possible to draw?

Can you find a reliable strategy for choosing coordinates that will locate the treasure in the minimum number of guesses?

An environment that enables you to investigate tessellations of regular polygons

Given the nets of 4 cubes with the faces coloured in 4 colours, build a tower so that on each vertical wall no colour is repeated, that is all 4 colours appear.

Experiment with the interactivity of "rolling" regular polygons, and explore how the different positions of the red dot affects the distance it travels at each stage.

Experiment with the interactivity of "rolling" regular polygons, and explore how the different positions of the red dot affects its speed at each stage.

Investigate how the four L-shapes fit together to make an enlarged L-shape. You could explore this idea with other shapes too.

Experiment with the interactivity of "rolling" regular polygons, and explore how the different positions of the red dot affects its vertical and horizontal movement at each stage.

How can the same pieces of the tangram make this bowl before and after it was chipped? Use the interactivity to try and work out what is going on!

Can you work out what is wrong with the cogs on a UK 2 pound coin?

Can you use small coloured cubes to make a 3 by 3 by 3 cube so that each face of the bigger cube contains one of each colour?

You have 4 red and 5 blue counters. How many ways can they be placed on a 3 by 3 grid so that all the rows columns and diagonals have an even number of red counters?

A shape and space game for 2,3 or 4 players. Be the last person to be able to place a pentomino piece on the playing board. Play with card, or on the computer.

Imagine a wheel with different markings painted on it at regular intervals. Can you predict the colour of the 18th mark? The 100th mark?

Hover your mouse over the counters to see which ones will be removed. Click to remove them. The winner is the last one to remove a counter. How you can make sure you win?

Show how this pentagonal tile can be used to tile the plane and describe the transformations which map this pentagon to its images in the tiling.

The aim of the game is to slide the green square from the top right hand corner to the bottom left hand corner in the least number of moves.

Two engines, at opposite ends of a single track railway line, set off towards one another just as a fly, sitting on the front of one of the engines, sets off flying along the railway line...

Players take it in turns to choose a dot on the grid. The winner is the first to have four dots that can be joined to form a square.

A game for 1 or 2 people. Use the interactive version, or play with friends. Try to round up as many counters as possible.

Here is a chance to play a fractions version of the classic Countdown Game.

A game for two people that can be played with pencils and paper. Combine your knowledge of coordinates with some strategic thinking.

A game for 1 person. Can you work out how the dice must be rolled from the start position to the finish? Play on line.

A game for two or more players that uses a knowledge of measuring tools. Spin the spinner and identify which jobs can be done with the measuring tool shown.

Use an Excel to investigate division. Explore the relationships between the process elements using an interactive spreadsheet.

What are the coordinates of the coloured dots that mark out the tangram? Try changing the position of the origin. What happens to the coordinates now?

Can you see why 2 by 2 could be 5? Can you predict what 2 by 10 will be?

A tetromino is made up of four squares joined edge to edge. Can this tetromino, together with 15 copies of itself, be used to cover an eight by eight chessboard?

What is the greatest number of squares you can make by overlapping three squares?

Match pairs of cards so that they have equivalent ratios.

Use the interactivity to move Mr Pearson and his dog. Can you move him so that the graph shows a curve?

A simple file for the Interactive whiteboard or PC screen, demonstrating equivalent fractions.

Cut four triangles from a square as shown in the picture. How many different shapes can you make by fitting the four triangles back together?

A game in which players take it in turns to choose a number. Can you block your opponent?

Seeing Squares game for an adult and child. Can you come up with a way of always winning this game?

What shape is the overlap when you slide one of these shapes half way across another? Can you picture it in your head? Use the interactivity to check your visualisation.

Players take it in turns to choose a dot on the grid. The winner is the first to have four dots that can be joined to form a square.

A simple spinner that is equally likely to land on Red or Black. Useful if tossing a coin, dropping it, and rummaging about on the floor have lost their appeal. Needs a modern browser; if IE then at. . . .

Have a go at this well-known challenge. Can you swap the frogs and toads in as few slides and jumps as possible?

An Excel spreadsheet with an investigation.