When number pyramids have a sequence on the bottom layer, some interesting patterns emerge...

Do you know how to find the area of a triangle? You can count the squares. What happens if we turn the triangle on end? Press the button and see. Try counting the number of units in the triangle now. . . .

This problem is about investigating whether it is possible to start at one vertex of a platonic solid and visit every other vertex once only returning to the vertex you started at.

The aim of the game is to slide the green square from the top right hand corner to the bottom left hand corner in the least number of moves.

A and B are two interlocking cogwheels having p teeth and q teeth respectively. One tooth on B is painted red. Find the values of p and q for which the red tooth on B contacts every gap on the. . . .

Players take it in turns to choose a dot on the grid. The winner is the first to have four dots that can be joined to form a square.

Triangular numbers can be represented by a triangular array of squares. What do you notice about the sum of identical triangle numbers?

Can you use small coloured cubes to make a 3 by 3 by 3 cube so that each face of the bigger cube contains one of each colour?

Try entering different sets of numbers in the number pyramids. How does the total at the top change?

Use an Excel spreadsheet to explore long multiplication.

A simple file for the Interactive whiteboard or PC screen, demonstrating equivalent fractions.

Use Excel to explore multiplication of fractions.

Use an interactive Excel spreadsheet to explore number in this exciting game!

Use Excel to investigate the effect of translations around a number grid.

Here is a chance to play a fractions version of the classic Countdown Game.

Draw some isosceles triangles with an area of $9$cm$^2$ and a vertex at (20,20). If all the vertices must have whole number coordinates, how many is it possible to draw?

A tilted square is a square with no horizontal sides. Can you devise a general instruction for the construction of a square when you are given just one of its sides?

Semi-regular tessellations combine two or more different regular polygons to fill the plane. Can you find all the semi-regular tessellations?

Use an interactive Excel spreadsheet to investigate factors and multiples.

Use Excel to practise adding and subtracting fractions.

It's easy to work out the areas of most squares that we meet, but what if they were tilted?

Can you put the 25 coloured tiles into the 5 x 5 square so that no column, no row and no diagonal line have tiles of the same colour in them?

A game for two people, or play online. Given a target number, say 23, and a range of numbers to choose from, say 1-4, players take it in turns to add to the running total to hit their target.

A circle rolls around the outside edge of a square so that its circumference always touches the edge of the square. Can you describe the locus of the centre of the circle?

Can you explain the strategy for winning this game with any target?

Use an Excel to investigate division. Explore the relationships between the process elements using an interactive spreadsheet.

Euler discussed whether or not it was possible to stroll around Koenigsberg crossing each of its seven bridges exactly once. Experiment with different numbers of islands and bridges.

An Excel spreadsheet with an investigation.

We can show that (x + 1)² = x² + 2x + 1 by considering the area of an (x + 1) by (x + 1) square. Show in a similar way that (x + 2)² = x² + 4x + 4

Try to stop your opponent from being able to split the piles of counters into unequal numbers. Can you find a strategy?

Given the nets of 4 cubes with the faces coloured in 4 colours, build a tower so that on each vertical wall no colour is repeated, that is all 4 colours appear.

Meg and Mo still need to hang their marbles so that they balance, but this time the constraints are different. Use the interactivity to experiment and find out what they need to do.

A game for 1 person. Can you work out how the dice must be rolled from the start position to the finish? Play on line.

A red square and a blue square overlap so that the corner of the red square rests on the centre of the blue square. Show that, whatever the orientation of the red square, it covers a quarter of the. . . .

Can you find a reliable strategy for choosing coordinates that will locate the treasure in the minimum number of guesses?

This article gives you a few ideas for understanding the Got It! game and how you might find a winning strategy.

Investigate how the four L-shapes fit together to make an enlarged L-shape. You could explore this idea with other shapes too.

Meg and Mo need to hang their marbles so that they balance. Use the interactivity to experiment and find out what they need to do.

A game for 1 or 2 people. Use the interactive version, or play with friends. Try to round up as many counters as possible.

A game for 2 players that can be played online. Players take it in turns to select a word from the 9 words given. The aim is to select all the occurrences of the same letter.

How can the same pieces of the tangram make this bowl before and after it was chipped? Use the interactivity to try and work out what is going on!

Can you work out what is wrong with the cogs on a UK 2 pound coin?

A collection of resources to support work on Factors and Multiples at Secondary level.

A game in which players take it in turns to choose a number. Can you block your opponent?

Seeing Squares game for an adult and child. Can you come up with a way of always winning this game?

Mo has left, but Meg is still experimenting. Use the interactivity to help you find out how she can alter her pouch of marbles and still keep the two pouches balanced.

Players take it in turns to choose a dot on the grid. The winner is the first to have four dots that can be joined to form a square.

Add or subtract the two numbers on the spinners and try to complete a row of three. Are there some numbers that are good to aim for?