Seven balls are shaken. You win if the two blue balls end up touching. What is the probability of winning?

Find the frequency distribution for ordinary English, and use it to help you crack the code.

Discs are flipped in the air. You win if all the faces show the same colour. What is the probability of winning?

Six balls are shaken. You win if at least one red ball ends in a corner. What is the probability of winning?

Use the interactivity or play this dice game yourself. How could you make it fair?

This interactivity invites you to make conjectures and explore probabilities of outcomes related to two independent events.

Use this animation to experiment with lotteries. Choose how many balls to match, how many are in the carousel, and how many draws to make at once.

Try out the lottery that is played in a far-away land. What is the chance of winning?

A simple spinner that is equally likely to land on Red or Black. Useful if tossing a coin, dropping it, and rummaging about on the floor have lost their appeal. Needs a modern browser; if IE then at. . . .

Use Excel to explore multiplication of fractions.

Use Excel to investigate the effect of translations around a number grid.

Use an interactive Excel spreadsheet to explore number in this exciting game!

A simple file for the Interactive whiteboard or PC screen, demonstrating equivalent fractions.

Use Excel to practise adding and subtracting fractions.

Use an interactive Excel spreadsheet to investigate factors and multiples.

Use an Excel to investigate division. Explore the relationships between the process elements using an interactive spreadsheet.

An interactive game to be played on your own or with friends. Imagine you are having a party. Each person takes it in turns to stand behind the chair where they will get the most chocolate.

Euler discussed whether or not it was possible to stroll around Koenigsberg crossing each of its seven bridges exactly once. Experiment with different numbers of islands and bridges.

Is it possible to place 2 counters on the 3 by 3 grid so that there is an even number of counters in every row and every column? How about if you have 3 counters or 4 counters or....?

Can you beat the computer in the challenging strategy game?

A game for two people, or play online. Given a target number, say 23, and a range of numbers to choose from, say 1-4, players take it in turns to add to the running total to hit their target.

A game for 1 or 2 people. Use the interactive version, or play with friends. Try to round up as many counters as possible.

Start by putting one million (1 000 000) into the display of your calculator. Can you reduce this to 7 using just the 7 key and add, subtract, multiply, divide and equals as many times as you like?

Players take it in turns to choose a dot on the grid. The winner is the first to have four dots that can be joined to form a square.

Two engines, at opposite ends of a single track railway line, set off towards one another just as a fly, sitting on the front of one of the engines, sets off flying along the railway line...

When number pyramids have a sequence on the bottom layer, some interesting patterns emerge...

Try entering different sets of numbers in the number pyramids. How does the total at the top change?

Triangular numbers can be represented by a triangular array of squares. What do you notice about the sum of identical triangle numbers?

It's easy to work out the areas of most squares that we meet, but what if they were tilted?

We can show that (x + 1)² = x² + 2x + 1 by considering the area of an (x + 1) by (x + 1) square. Show in a similar way that (x + 2)² = x² + 4x + 4

Try to stop your opponent from being able to split the piles of counters into unequal numbers. Can you find a strategy?

Two circles of equal radius touch at P. One circle is fixed whilst the other moves, rolling without slipping, all the way round. How many times does the moving coin revolve before returning to P?

The aim of the game is to slide the green square from the top right hand corner to the bottom left hand corner in the least number of moves.

A circle rolls around the outside edge of a square so that its circumference always touches the edge of the square. Can you describe the locus of the centre of the circle?

What shaped overlaps can you make with two circles which are the same size? What shapes are 'left over'? What shapes can you make when the circles are different sizes?

A shape and space game for 2,3 or 4 players. Be the last person to be able to place a pentomino piece on the playing board. Play with card, or on the computer.

A game for 2 players that can be played online. Players take it in turns to select a word from the 9 words given. The aim is to select all the occurrences of the same letter.

Imagine a wheel with different markings painted on it at regular intervals. Can you predict the colour of the 18th mark? The 100th mark?

Three beads are threaded on a circular wire and are coloured either red or blue. Can you find all four different combinations?

Hover your mouse over the counters to see which ones will be removed. Click to remove them. The winner is the last one to remove a counter. How you can make sure you win?

Use the interactivity to make this Islamic star and cross design. Can you produce a tessellation of regular octagons with two different types of triangle?

Can you spot the similarities between this game and other games you know? The aim is to choose 3 numbers that total 15.

This problem is about investigating whether it is possible to start at one vertex of a platonic solid and visit every other vertex once only returning to the vertex you started at.

A red square and a blue square overlap so that the corner of the red square rests on the centre of the blue square. Show that, whatever the orientation of the red square, it covers a quarter of the. . . .

Show how this pentagonal tile can be used to tile the plane and describe the transformations which map this pentagon to its images in the tiling.

Work out the fractions to match the cards with the same amount of money.

Can you find all the different ways of lining up these Cuisenaire rods?

Can you find a relationship between the number of dots on the circle and the number of steps that will ensure that all points are hit?