Choose four of the numbers from 1 to 9 to put in the squares so that the differences between joined squares are odd.

This investigates one particular property of number by looking closely at an example of adding two odd numbers together.

Place the numbers from 1 to 9 in the squares below so that the difference between joined squares is odd. How many different ways can you do this?

Can you order the digits from 1-3 to make a number which is divisible by 3 so when the last digit is removed it becomes a 2-figure number divisible by 2, and so on?

There is a clock-face where the numbers have become all mixed up. Can you find out where all the numbers have got to from these ten statements?

Arrange the numbers 1 to 6 in each set of circles below. The sum of each side of the triangle should equal the number in its centre.

This activity is best done with a whole class or in a large group. Can you match the cards? What happens when you add pairs of the numbers together?

Is it possible to place 2 counters on the 3 by 3 grid so that there is an even number of counters in every row and every column? How about if you have 3 counters or 4 counters or....?

If you have ten counters numbered 1 to 10, how many can you put into pairs that add to 10? Which ones do you have to leave out? Why?

Ben’s class were cutting up number tracks. First they cut them into twos and added up the numbers on each piece. What patterns could they see?

In how many different ways can you break up a stick of 7 interlocking cubes? Now try with a stick of 8 cubes and a stick of 6 cubes.

Investigate the smallest number of moves it takes to turn these mats upside-down if you can only turn exactly three at a time.

Can you find the chosen number from the grid using the clues?

Can you put the numbers 1-5 in the V shape so that both 'arms' have the same total?

How many different sets of numbers with at least four members can you find in the numbers in this box?

What happens when you add three numbers together? Will your answer be odd or even? How do you know?

In this calculation, the box represents a missing digit. What could the digit be? What would the solution be in each case?

There are ten children in Becky's group. Can you find a set of numbers for each of them? Are there any other sets?

This problem looks at how one example of your choice can show something about the general structure of multiplication.

In this problem we are looking at sets of parallel sticks that cross each other. What is the least number of crossings you can make? And the greatest?

Are these statements always true, sometimes true or never true?

Daisy and Akram were making number patterns. Daisy was using beads that looked like flowers and Akram was using cube bricks. First they were counting in twos.

Use cubes to continue making the numbers from 7 to 20. Are they sticks, rectangles or squares?

Look at what happens when you take a number, square it and subtract your answer. What kind of number do you get? Can you prove it?

Try grouping the dominoes in the ways described. Are there any left over each time? Can you explain why?

Pat counts her sweets in different groups and both times she has some left over. How many sweets could she have had?

A game for 2 people using a pack of cards Turn over 2 cards and try to make an odd number or a multiple of 3.

This problem challenges you to find out how many odd numbers there are between pairs of numbers. Can you find a pair of numbers that has four odds between them?

These spinners will give you the tens and unit digits of a number. Can you choose sets of numbers to collect so that you spin six numbers belonging to your sets in as few spins as possible?

This article introduces the idea of generic proof for younger children and illustrates how one example can offer a proof of a general result through unpacking its underlying structure.

In this game for two players, the idea is to take it in turns to choose 1, 3, 5 or 7. The winner is the first to make the total 37.

Becky created a number plumber which multiplies by 5 and subtracts 4. What do you notice about the numbers that it produces? Can you explain your findings?

Are these statements relating to odd and even numbers always true, sometimes true or never true?

Mr Gilderdale is playing a game with his class. What rule might he have chosen? How would you test your idea?

Four of these clues are needed to find the chosen number on this grid and four are true but do nothing to help in finding the number. Can you sort out the clues and find the number?

These red, yellow and blue spinners were each spun 45 times in total. Can you work out which numbers are on each spinner?

Use the interactivities to fill in these Carroll diagrams. How do you know where to place the numbers?

I am less than 25. My ones digit is twice my tens digit. My digits add up to an even number.

Try to stop your opponent from being able to split the piles of counters into unequal numbers. Can you find a strategy?

A game for 2 or more people. Starting with 100, subratct a number from 1 to 9 from the total. You score for making an odd number, a number ending in 0 or a multiple of 6.

Can you sort numbers into sets? Can you give each set a name?

Think of a number, square it and subtract your starting number. Is the number you’re left with odd or even? How do the images help to explain this?

Florence, Ethan and Alma have each added together two 'next-door' numbers. What is the same about their answers?

Yasmin and Zach have some bears to share. Which numbers of bears can they share so that there are none left over?

This article for teachers describes how number arrays can be a useful representation for many number concepts.