To find the integral of a polynomial, evaluate it at some special points and add multiples of these values.

The sum of any two of the numbers 2, 34 and 47 is a perfect square. Choose three square numbers and find sets of three integers with this property. Generalise to four integers.

Pick a square within a multiplication square and add the numbers on each diagonal. What do you notice?

Given a set of points (x,y) with distinct x values, find a polynomial that goes through all of them, then prove some results about the existence and uniqueness of these polynomials.

Take any two numbers between 0 and 1. Prove that the sum of the numbers is always less than one plus their product?

Can you find the value of this function involving algebraic fractions for x=2000?

Show that if you add 1 to the product of four consecutive numbers the answer is ALWAYS a perfect square.

If a two digit number has its digits reversed and the smaller of the two numbers is subtracted from the larger, prove the difference can never be prime.

A, B & C own a half, a third and a sixth of a coin collection. Each grab some coins, return some, then share equally what they had put back, finishing with their own share. How rich are they?

Relate these algebraic expressions to geometrical diagrams.

Given any two polynomials in a single variable it is always possible to eliminate the variable and obtain a formula showing the relationship between the two polynomials. Try this one.

Can you explain why a sequence of operations always gives you perfect squares?

Find all positive integers a and b for which the two equations: x^2-ax+b = 0 and x^2-bx+a = 0 both have positive integer solutions.

Let S1 = 1 , S2 = 2 + 3, S3 = 4 + 5 + 6 ,........ Calculate S17.

Take any pair of two digit numbers x=ab and y=cd where, without loss of generality, ab > cd . Form two 4 digit numbers r=abcd and s=cdab and calculate: {r^2 - s^2} /{x^2 - y^2}.

Can you show that you can share a square pizza equally between two people by cutting it four times using vertical, horizontal and diagonal cuts through any point inside the square?

By considering powers of (1+x), show that the sum of the squares of the binomial coefficients from 0 to n is 2nCn

A 2-Digit number is squared. When this 2-digit number is reversed and squared, the difference between the squares is also a square. What is the 2-digit number?

How good are you at finding the formula for a number pattern ?

What is the value of the integers a and b where sqrt(8-4sqrt3) = sqrt a - sqrt b?

This shape comprises four semi-circles. What is the relationship between the area of the shaded region and the area of the circle on AB as diameter?

Show that all pentagonal numbers are one third of a triangular number.

Find relationships between the polynomials a, b and c which are polynomials in n giving the sums of the first n natural numbers, squares and cubes respectively.

For which values of n is the Fibonacci number fn even? Which Fibonnaci numbers are divisible by 3?

Can you find a rule which relates triangular numbers to square numbers?

By proving these particular identities, prove the existence of general cases.

Find all the triples of numbers a, b, c such that each one of them plus the product of the other two is always 2.

The nth term of a sequence is given by the formula n^3 + 11n . Find the first four terms of the sequence given by this formula and the first term of the sequence which is bigger than one million. . . .

Some students have been working out the number of strands needed for different sizes of cable. Can you make sense of their solutions?

Imagine a large cube made from small red cubes being dropped into a pot of yellow paint. How many of the small cubes will have yellow paint on their faces?

Many numbers can be expressed as the difference of two perfect squares. What do you notice about the numbers you CANNOT make?

Semicircles are drawn on the sides of a rectangle. Prove that the sum of the areas of the four crescents is equal to the area of the rectangle.

Janine noticed, while studying some cube numbers, that if you take three consecutive whole numbers and multiply them together and then add the middle number of the three, you get the middle number. . . .

A sequence of polynomials starts 0, 1 and each poly is given by combining the two polys in the sequence just before it. Investigate and prove results about the roots of the polys.

What is the total number of squares that can be made on a 5 by 5 geoboard?

What would you get if you continued this sequence of fraction sums? 1/2 + 2/1 = 2/3 + 3/2 = 3/4 + 4/3 =

Take a complicated fraction with the product of five quartics top and bottom and reduce this to a whole number. This is a numerical example involving some clever algebra.

Choose four consecutive whole numbers. Multiply the first and last numbers together. Multiply the middle pair together. What do you notice?

A point moves around inside a rectangle. What are the least and the greatest values of the sum of the squares of the distances from the vertices?

Jo has three numbers which she adds together in pairs. When she does this she has three different totals: 11, 17 and 22 What are the three numbers Jo had to start with?”

The sums of the squares of three related numbers is also a perfect square - can you explain why?

Show that for natural numbers x and y if x/y > 1 then x/y>(x+1)/(y+1}>1. Hence prove that the product for i=1 to n of [(2i)/(2i-1)] tends to infinity as n tends to infinity.

If x + y = -1 find the largest value of xy by coordinate geometry, by calculus and by algebra.

Can you make sense of these three proofs of Pythagoras' Theorem?

Can you hit the target functions using a set of input functions and a little calculus and algebra?

The problem is how did Archimedes calculate the lengths of the sides of the polygons which needed him to be able to calculate square roots?