Jo made a cube from some smaller cubes, painted some of the faces of the large cube, and then took it apart again. 45 small cubes had no paint on them at all. How many small cubes did Jo use?

Can you find a rule which connects consecutive triangular numbers?

How many winning lines can you make in a three-dimensional version of noughts and crosses?

Show there are exactly 12 magic labellings of the Magic W using the numbers 1 to 9. Prove that for every labelling with a magic total T there is a corresponding labelling with a magic total 30-T.

Find all the ways of placing the numbers 1 to 9 on a W shape, with 3 numbers on each leg, so that each set of 3 numbers has the same total.

A cyclist and a runner start off simultaneously around a race track each going at a constant speed. The cyclist goes all the way around and then catches up with the runner. He then instantly turns. . . .

Can you find a rule which relates triangular numbers to square numbers?

Some students have been working out the number of strands needed for different sizes of cable. Can you make sense of their solutions?

Pick a square within a multiplication square and add the numbers on each diagonal. What do you notice?

Imagine a large cube made from small red cubes being dropped into a pot of yellow paint. How many of the small cubes will have yellow paint on their faces?

The opposite vertices of a square have coordinates (a,b) and (c,d). What are the coordinates of the other vertices?

Two motorboats travelling up and down a lake at constant speeds leave opposite ends A and B at the same instant, passing each other, for the first time 600 metres from A, and on their return, 400. . . .

Take any two numbers between 0 and 1. Prove that the sum of the numbers is always less than one plus their product?

Show that for natural numbers x and y if x/y > 1 then x/y>(x+1)/(y+1}>1. Hence prove that the product for i=1 to n of [(2i)/(2i-1)] tends to infinity as n tends to infinity.

Given a set of points (x,y) with distinct x values, find a polynomial that goes through all of them, then prove some results about the existence and uniqueness of these polynomials.

Show that all pentagonal numbers are one third of a triangular number.

Janine noticed, while studying some cube numbers, that if you take three consecutive whole numbers and multiply them together and then add the middle number of the three, you get the middle number. . . .

Can you find the value of this function involving algebraic fractions for x=2000?

First of all, pick the number of times a week that you would like to eat chocolate. Multiply this number by 2...

A, B & C own a half, a third and a sixth of a coin collection. Each grab some coins, return some, then share equally what they had put back, finishing with their own share. How rich are they?

Given any two polynomials in a single variable it is always possible to eliminate the variable and obtain a formula showing the relationship between the two polynomials. Try this one.

If a is the radius of the axle, b the radius of each ball-bearing, and c the radius of the hub, why does the number of ball bearings n determine the ratio c/a? Find a formula for c/a in terms of n.

This shape comprises four semi-circles. What is the relationship between the area of the shaded region and the area of the circle on AB as diameter?

This article explains how to make your own magic square to mark a special occasion with the special date of your choice on the top line.

Can you make sense of these three proofs of Pythagoras' Theorem?

Show that if you add 1 to the product of four consecutive numbers the answer is ALWAYS a perfect square.

To find the integral of a polynomial, evaluate it at some special points and add multiples of these values.

Can you find the lap times of the two cyclists travelling at constant speeds?

Semicircles are drawn on the sides of a rectangle. Prove that the sum of the areas of the four crescents is equal to the area of the rectangle.

Can you explain why a sequence of operations always gives you perfect squares?

The problem is how did Archimedes calculate the lengths of the sides of the polygons which needed him to be able to calculate square roots?

Kyle and his teacher disagree about his test score - who is right?

Relate these algebraic expressions to geometrical diagrams.

A point moves around inside a rectangle. What are the least and the greatest values of the sum of the squares of the distances from the vertices?

The sums of the squares of three related numbers is also a perfect square - can you explain why?

However did we manage before calculators? Is there an efficient way to do a square root if you have to do the work yourself?

Take a complicated fraction with the product of five quartics top and bottom and reduce this to a whole number. This is a numerical example involving some clever algebra.

By proving these particular identities, prove the existence of general cases.

Five equations... five unknowns... can you solve the system?

Find all positive integers a and b for which the two equations: x^2-ax+b = 0 and x^2-bx+a = 0 both have positive integer solutions.

The sum of any two of the numbers 2, 34 and 47 is a perfect square. Choose three square numbers and find sets of three integers with this property. Generalise to four integers.

The nth term of a sequence is given by the formula n^3 + 11n . Find the first four terms of the sequence given by this formula and the first term of the sequence which is bigger than one million. . . .

This pattern of six circles contains three unit circles. Work out the radii of the other three circles and the relationship between them.

To break down an algebraic fraction into partial fractions in which all the denominators are linear and all the numerators are constants you sometimes need complex numbers.

Take any pair of two digit numbers x=ab and y=cd where, without loss of generality, ab > cd . Form two 4 digit numbers r=abcd and s=cdab and calculate: {r^2 - s^2} /{x^2 - y^2}.

Take a few whole numbers away from a triangle number. If you know the mean of the remaining numbers can you find the triangle number and which numbers were removed?

Choose four consecutive whole numbers. Multiply the first and last numbers together. Multiply the middle pair together. What do you notice?