What is the value of the integers a and b where sqrt(8-4sqrt3) = sqrt a - sqrt b?

Find relationships between the polynomials a, b and c which are polynomials in n giving the sums of the first n natural numbers, squares and cubes respectively.

For which values of n is the Fibonacci number fn even? Which Fibonnaci numbers are divisible by 3?

A sequence of polynomials starts 0, 1 and each poly is given by combining the two polys in the sequence just before it. Investigate and prove results about the roots of the polys.

Can you hit the target functions using a set of input functions and a little calculus and algebra?

Take a few whole numbers away from a triangle number. If you know the mean of the remaining numbers can you find the triangle number and which numbers were removed?

Can you find the value of this function involving algebraic fractions for x=2000?

Attach weights of 1, 2, 4, and 8 units to the four attachment points on the bar. Move the bar from side to side until you find a balance point. Is it possible to predict that position?

By considering powers of (1+x), show that the sum of the squares of the binomial coefficients from 0 to n is 2nCn

Given any two polynomials in a single variable it is always possible to eliminate the variable and obtain a formula showing the relationship between the two polynomials. Try this one.

Take any two numbers between 0 and 1. Prove that the sum of the numbers is always less than one plus their product?

If x + y = -1 find the largest value of xy by coordinate geometry, by calculus and by algebra.

Relate these algebraic expressions to geometrical diagrams.

Find all positive integers a and b for which the two equations: x^2-ax+b = 0 and x^2-bx+a = 0 both have positive integer solutions.

Show that for natural numbers x and y if x/y > 1 then x/y>(x+1)/(y+1}>1. Hence prove that the product for i=1 to n of [(2i)/(2i-1)] tends to infinity as n tends to infinity.

The sum of any two of the numbers 2, 34 and 47 is a perfect square. Choose three square numbers and find sets of three integers with this property. Generalise to four integers.

The nth term of a sequence is given by the formula n^3 + 11n . Find the first four terms of the sequence given by this formula and the first term of the sequence which is bigger than one million. . . .

Given a set of points (x,y) with distinct x values, find a polynomial that goes through all of them, then prove some results about the existence and uniqueness of these polynomials.

By proving these particular identities, prove the existence of general cases.

Take a complicated fraction with the product of five quartics top and bottom and reduce this to a whole number. This is a numerical example involving some clever algebra.

To find the integral of a polynomial, evaluate it at some special points and add multiples of these values.

Pick a square within a multiplication square and add the numbers on each diagonal. What do you notice?

Account of an investigation which starts from the area of an annulus and leads to the formula for the difference of two squares.

Find the five distinct digits N, R, I, C and H in the following nomogram

Can you convince me of each of the following: If a square number is multiplied by a square number the product is ALWAYS a square number...

Prove that the product of the sum of n positive numbers with the sum of their reciprocals is not less than n^2.

Polygons drawn on square dotty paper have dots on their perimeter (p) and often internal (i) ones as well. Find a relationship between p, i and the area of the polygons.

Show that all pentagonal numbers are one third of a triangular number.

The sums of the squares of three related numbers is also a perfect square - can you explain why?

Take any pair of two digit numbers x=ab and y=cd where, without loss of generality, ab > cd . Form two 4 digit numbers r=abcd and s=cdab and calculate: {r^2 - s^2} /{x^2 - y^2}.

To break down an algebraic fraction into partial fractions in which all the denominators are linear and all the numerators are constants you sometimes need complex numbers.

Can you find a rule which connects consecutive triangular numbers?

Can you find a rule which relates triangular numbers to square numbers?

If a is the radius of the axle, b the radius of each ball-bearing, and c the radius of the hub, why does the number of ball bearings n determine the ratio c/a? Find a formula for c/a in terms of n.

A task which depends on members of the group noticing the needs of others and responding.

Jo made a cube from some smaller cubes, painted some of the faces of the large cube, and then took it apart again. 45 small cubes had no paint on them at all. How many small cubes did Jo use?

An algebra task which depends on members of the group noticing the needs of others and responding.

The incircles of 3, 4, 5 and of 5, 12, 13 right angled triangles have radii 1 and 2 units respectively. What about triangles with an inradius of 3, 4 or 5 or ...?

The squares of any 8 consecutive numbers can be arranged into two sets of four numbers with the same sum. True of false?

First of all, pick the number of times a week that you would like to eat chocolate. Multiply this number by 2...

Let S1 = 1 , S2 = 2 + 3, S3 = 4 + 5 + 6 ,........ Calculate S17.

Kyle and his teacher disagree about his test score - who is right?

A point moves around inside a rectangle. What are the least and the greatest values of the sum of the squares of the distances from the vertices?

Many numbers can be expressed as the difference of two perfect squares. What do you notice about the numbers you CANNOT make?

However did we manage before calculators? Is there an efficient way to do a square root if you have to do the work yourself?

What functions can you make using the function machines RECIPROCAL and PRODUCT and the operator machines DIFF and INT?