For which values of n is the Fibonacci number fn even? Which Fibonnaci numbers are divisible by 3?

Find all positive integers a and b for which the two equations: x^2-ax+b = 0 and x^2-bx+a = 0 both have positive integer solutions.

Take any two numbers between 0 and 1. Prove that the sum of the numbers is always less than one plus their product?

What is the value of the integers a and b where sqrt(8-4sqrt3) = sqrt a - sqrt b?

Take a complicated fraction with the product of five quartics top and bottom and reduce this to a whole number. This is a numerical example involving some clever algebra.

By proving these particular identities, prove the existence of general cases.

Show that for natural numbers x and y if x/y > 1 then x/y>(x+1)/(y+1}>1. Hence prove that the product for i=1 to n of [(2i)/(2i-1)] tends to infinity as n tends to infinity.

Prove that the product of the sum of n positive numbers with the sum of their reciprocals is not less than n^2.

To find the integral of a polynomial, evaluate it at some special points and add multiples of these values.

Given a set of points (x,y) with distinct x values, find a polynomial that goes through all of them, then prove some results about the existence and uniqueness of these polynomials.

A point moves around inside a rectangle. What are the least and the greatest values of the sum of the squares of the distances from the vertices?

Given any two polynomials in a single variable it is always possible to eliminate the variable and obtain a formula showing the relationship between the two polynomials. Try this one.

A sequence of polynomials starts 0, 1 and each poly is given by combining the two polys in the sequence just before it. Investigate and prove results about the roots of the polys.

The sum of any two of the numbers 2, 34 and 47 is a perfect square. Choose three square numbers and find sets of three integers with this property. Generalise to four integers.

By considering powers of (1+x), show that the sum of the squares of the binomial coefficients from 0 to n is 2nCn

A, B & C own a half, a third and a sixth of a coin collection. Each grab some coins, return some, then share equally what they had put back, finishing with their own share. How rich are they?

Attach weights of 1, 2, 4, and 8 units to the four attachment points on the bar. Move the bar from side to side until you find a balance point. Is it possible to predict that position?

If x + y = -1 find the largest value of xy by coordinate geometry, by calculus and by algebra.

The sums of the squares of three related numbers is also a perfect square - can you explain why?

Can you find the value of this function involving algebraic fractions for x=2000?

Find the five distinct digits N, R, I, C and H in the following nomogram

Can you prove that twice the sum of two squares always gives the sum of two squares?

Relate these algebraic expressions to geometrical diagrams.

The nth term of a sequence is given by the formula n^3 + 11n . Find the first four terms of the sequence given by this formula and the first term of the sequence which is bigger than one million. . . .

115^2 = (110 x 120) + 25, that is 13225 895^2 = (890 x 900) + 25, that is 801025 Can you explain what is happening and generalise?

Five equations... five unknowns... can you solve the system?

Let S1 = 1 , S2 = 2 + 3, S3 = 4 + 5 + 6 ,........ Calculate S17.

Find all the triples of numbers a, b, c such that each one of them plus the product of the other two is always 2.

The squares of any 8 consecutive numbers can be arranged into two sets of four numbers with the same sum. True of false?

How good are you at finding the formula for a number pattern ?

Can you convince me of each of the following: If a square number is multiplied by a square number the product is ALWAYS a square number...

Show that all pentagonal numbers are one third of a triangular number.

Janine noticed, while studying some cube numbers, that if you take three consecutive whole numbers and multiply them together and then add the middle number of the three, you get the middle number. . . .

Pick a square within a multiplication square and add the numbers on each diagonal. What do you notice?

Polygons drawn on square dotty paper have dots on their perimeter (p) and often internal (i) ones as well. Find a relationship between p, i and the area of the polygons.

Can you find a rule which relates triangular numbers to square numbers?

Can you find a rule which connects consecutive triangular numbers?

Take a few whole numbers away from a triangle number. If you know the mean of the remaining numbers can you find the triangle number and which numbers were removed?

To break down an algebraic fraction into partial fractions in which all the denominators are linear and all the numerators are constants you sometimes need complex numbers.

Take any pair of two digit numbers x=ab and y=cd where, without loss of generality, ab > cd . Form two 4 digit numbers r=abcd and s=cdab and calculate: {r^2 - s^2} /{x^2 - y^2}.

Find relationships between the polynomials a, b and c which are polynomials in n giving the sums of the first n natural numbers, squares and cubes respectively.

The incircles of 3, 4, 5 and of 5, 12, 13 right angled triangles have radii 1 and 2 units respectively. What about triangles with an inradius of 3, 4 or 5 or ...?

Many numbers can be expressed as the difference of two perfect squares. What do you notice about the numbers you CANNOT make?

First of all, pick the number of times a week that you would like to eat chocolate. Multiply this number by 2...

Kyle and his teacher disagree about his test score - who is right?

Triangle ABC is an equilateral triangle with three parallel lines going through the vertices. Calculate the length of the sides of the triangle if the perpendicular distances between the parallel. . . .

The problem is how did Archimedes calculate the lengths of the sides of the polygons which needed him to be able to calculate square roots?