Relate these algebraic expressions to geometrical diagrams.

A, B & C own a half, a third and a sixth of a coin collection. Each grab some coins, return some, then share equally what they had put back, finishing with their own share. How rich are they?

The sums of the squares of three related numbers is also a perfect square - can you explain why?

Find the missing angle between the two secants to the circle when the two angles at the centre subtended by the arcs created by the intersections of the secants and the circle are 50 and 120 degrees.

Given any two polynomials in a single variable it is always possible to eliminate the variable and obtain a formula showing the relationship between the two polynomials. Try this one.

Take any two numbers between 0 and 1. Prove that the sum of the numbers is always less than one plus their product?

Show that if you add 1 to the product of four consecutive numbers the answer is ALWAYS a perfect square.

To find the integral of a polynomial, evaluate it at some special points and add multiples of these values.

Janine noticed, while studying some cube numbers, that if you take three consecutive whole numbers and multiply them together and then add the middle number of the three, you get the middle number. . . .

Kyle and his teacher disagree about his test score - who is right?

Pick a square within a multiplication square and add the numbers on each diagonal. What do you notice?

Find all positive integers a and b for which the two equations: x^2-ax+b = 0 and x^2-bx+a = 0 both have positive integer solutions.

Show that for natural numbers x and y if x/y > 1 then x/y>(x+1)/(y+1}>1. Hence prove that the product for i=1 to n of [(2i)/(2i-1)] tends to infinity as n tends to infinity.

The sum of any two of the numbers 2, 34 and 47 is a perfect square. Choose three square numbers and find sets of three integers with this property. Generalise to four integers.

The nth term of a sequence is given by the formula n^3 + 11n . Find the first four terms of the sequence given by this formula and the first term of the sequence which is bigger than one million. . . .

Can you explain why a sequence of operations always gives you perfect squares?

By proving these particular identities, prove the existence of general cases.

Take a complicated fraction with the product of five quartics top and bottom and reduce this to a whole number. This is a numerical example involving some clever algebra.

By considering powers of (1+x), show that the sum of the squares of the binomial coefficients from 0 to n is 2nCn

Prove that 3 times the sum of 3 squares is the sum of 4 squares. Rather easier, can you prove that twice the sum of two squares always gives the sum of two squares?

If a two digit number has its digits reversed and the smaller of the two numbers is subtracted from the larger, prove the difference can never be prime.

Take any pair of two digit numbers x=ab and y=cd where, without loss of generality, ab > cd . Form two 4 digit numbers r=abcd and s=cdab and calculate: {r^2 - s^2} /{x^2 - y^2}.

This shape comprises four semi-circles. What is the relationship between the area of the shaded region and the area of the circle on AB as diameter?

Can you convince me of each of the following: If a square number is multiplied by a square number the product is ALWAYS a square number...

The problem is how did Archimedes calculate the lengths of the sides of the polygons which needed him to be able to calculate square roots?

A point moves around inside a rectangle. What are the least and the greatest values of the sum of the squares of the distances from the vertices?

Can you find the value of this function involving algebraic fractions for x=2000?

If x + y = -1 find the largest value of xy by coordinate geometry, by calculus and by algebra.

Semicircles are drawn on the sides of a rectangle. Prove that the sum of the areas of the four crescents is equal to the area of the rectangle.

Given a set of points (x,y) with distinct x values, find a polynomial that goes through all of them, then prove some results about the existence and uniqueness of these polynomials.

In turn 4 people throw away three nuts from a pile and hide a quarter of the remainder finally leaving a multiple of 4 nuts. How many nuts were at the start?

Can you make sense of these three proofs of Pythagoras' Theorem?

What would you get if you continued this sequence of fraction sums? 1/2 + 2/1 = 2/3 + 3/2 = 3/4 + 4/3 =

This pattern of six circles contains three unit circles. Work out the radii of the other three circles and the relationship between them.

Choose four consecutive whole numbers. Multiply the first and last numbers together. Multiply the middle pair together. What do you notice?

My train left London between 6 a.m. and 7 a.m. and arrived in Paris between 9 a.m. and 10 a.m. At the start and end of the journey the hands on my watch were in exactly the same positions but the. . . .

Given an equilateral triangle inside an isosceles triangle, can you find a relationship between the angles?

Charlie likes tablecloths that use as many colours as possible, but insists that his tablecloths have some symmetry. Can you work out how many colours he needs for different tablecloth designs?

Manufacturers need to minimise the amount of material used to make their product. What is the best cross-section for a gutter?

To break down an algebraic fraction into partial fractions in which all the denominators are linear and all the numerators are constants you sometimes need complex numbers.

Take a few whole numbers away from a triangle number. If you know the mean of the remaining numbers can you find the triangle number and which numbers were removed?

A moveable screen slides along a mirrored corridor towards a centrally placed light source. A ray of light from that source is directed towards a wall of the corridor, which it strikes at 45 degrees. . . .

How good are you at finding the formula for a number pattern ?

Attach weights of 1, 2, 4, and 8 units to the four attachment points on the bar. Move the bar from side to side until you find a balance point. Is it possible to predict that position?

Use algebra to reason why 16 and 32 are impossible to create as the sum of consecutive numbers.

A task which depends on members of the group noticing the needs of others and responding.

An algebra task which depends on members of the group noticing the needs of others and responding.