A 2-Digit number is squared. When this 2-digit number is reversed and squared, the difference between the squares is also a square. What is the 2-digit number?

Take any pair of two digit numbers x=ab and y=cd where, without loss of generality, ab > cd . Form two 4 digit numbers r=abcd and s=cdab and calculate: {r^2 - s^2} /{x^2 - y^2}.

Jo has three numbers which she adds together in pairs. When she does this she has three different totals: 11, 17 and 22 What are the three numbers Jo had to start with?”

If a two digit number has its digits reversed and the smaller of the two numbers is subtracted from the larger, prove the difference can never be prime.

The sums of the squares of three related numbers is also a perfect square - can you explain why?

Think of a number Multiply it by 3 Add 6 Take away your start number Divide by 2 Take away your number. (You have finished with 3!) HOW DOES THIS WORK?

Think of a two digit number, reverse the digits, and add the numbers together. Something special happens...

Make some loops out of regular hexagons. What rules can you discover?

Many numbers can be expressed as the difference of two perfect squares. What do you notice about the numbers you CANNOT make?

Can you convince me of each of the following: If a square number is multiplied by a square number the product is ALWAYS a square number...

Choose four consecutive whole numbers. Multiply the first and last numbers together. Multiply the middle pair together. What do you notice?

What would you get if you continued this sequence of fraction sums? 1/2 + 2/1 = 2/3 + 3/2 = 3/4 + 4/3 =

A job needs three men but in fact six people do it. When it is finished they are all paid the same. How much was paid in total, and much does each man get if the money is shared as Fred suggests?

The diagram illustrates the formula: 1 + 3 + 5 + ... + (2n - 1) = n² Use the diagram to show that any odd number is the difference of two squares.

Semicircles are drawn on the sides of a rectangle. Prove that the sum of the areas of the four crescents is equal to the area of the rectangle.

Pick the number of times a week that you eat chocolate. This number must be more than one but less than ten. Multiply this number by 2. Add 5 (for Sunday). Multiply by 50... Can you explain why it. . . .

Manufacturers need to minimise the amount of material used to make their product. What is the best cross-section for a gutter?

How many more miles must the car travel before the numbers on the milometer and the trip meter contain the same digits in the same order?

Polygons drawn on square dotty paper have dots on their perimeter (p) and often internal (i) ones as well. Find a relationship between p, i and the area of the polygons.

Given an equilateral triangle inside an isosceles triangle, can you find a relationship between the angles?

Arrange the numbers 1 to 16 into a 4 by 4 array. Choose a number. Cross out the numbers on the same row and column. Repeat this process. Add up you four numbers. Why do they always add up to 34?

Brian swims at twice the speed that a river is flowing, downstream from one moored boat to another and back again, taking 12 minutes altogether. How long would it have taken him in still water?

The squares of any 8 consecutive numbers can be arranged into two sets of four numbers with the same sum. True of false?

This article explains how to make your own magic square to mark a special occasion with the special date of your choice on the top line.

Can you find rectangles where the value of the area is the same as the value of the perimeter?

Think of two whole numbers under 10, and follow the steps. I can work out both your numbers very quickly. How?

Pick a square within a multiplication square and add the numbers on each diagonal. What do you notice?

When number pyramids have a sequence on the bottom layer, some interesting patterns emerge...

If the sides of the triangle in the diagram are 3, 4 and 5, what is the area of the shaded square?

A task which depends on members of the group noticing the needs of others and responding.

The Number Jumbler can always work out your chosen symbol. Can you work out how?

Some students have been working out the number of strands needed for different sizes of cable. Can you make sense of their solutions?

The heptathlon is an athletics competition consisting of 7 events. Can you make sense of the scoring system in order to advise a heptathlete on the best way to reach her target?

Robert noticed some interesting patterns when he highlighted square numbers in a spreadsheet. Can you prove that the patterns will continue?

An algebra task which depends on members of the group noticing the needs of others and responding.

How could Penny, Tom and Matthew work out how many chocolates there are in different sized boxes?

Think of a number, add one, double it, take away 3, add the number you first thought of, add 7, divide by 3 and take away the number you first thought of. You should now be left with 2. How do I. . . .

Crosses can be drawn on number grids of various sizes. What do you notice when you add opposite ends?

Imagine a large cube made from small red cubes being dropped into a pot of yellow paint. How many of the small cubes will have yellow paint on their faces?

Use algebra to reason why 16 and 32 are impossible to create as the sum of consecutive numbers.

Take any two numbers between 0 and 1. Prove that the sum of the numbers is always less than one plus their product?

Attach weights of 1, 2, 4, and 8 units to the four attachment points on the bar. Move the bar from side to side until you find a balance point. Is it possible to predict that position?

Imagine starting with one yellow cube and covering it all over with a single layer of red cubes, and then covering that cube with a layer of blue cubes. How many red and blue cubes would you need?

A moveable screen slides along a mirrored corridor towards a centrally placed light source. A ray of light from that source is directed towards a wall of the corridor, which it strikes at 45 degrees. . . .

Can you find a rule which connects consecutive triangular numbers?

Take a few whole numbers away from a triangle number. If you know the mean of the remaining numbers can you find the triangle number and which numbers were removed?