However did we manage before calculators? Is there an efficient way to do a square root if you have to do the work yourself?

The heptathlon is an athletics competition consisting of 7 events. Can you make sense of the scoring system in order to advise a heptathlete on the best way to reach her target?

If a sum invested gains 10% each year how long before it has doubled its value?

The sums of the squares of three related numbers is also a perfect square - can you explain why?

Choose four consecutive whole numbers. Multiply the first and last numbers together. Multiply the middle pair together. What do you notice?

Jo has three numbers which she adds together in pairs. When she does this she has three different totals: 11, 17 and 22 What are the three numbers Jo had to start with?”

A little bit of algebra explains this 'magic'. Ask a friend to pick 3 consecutive numbers and to tell you a multiple of 3. Then ask them to add the four numbers and multiply by 67, and to tell you. . . .

Attach weights of 1, 2, 4, and 8 units to the four attachment points on the bar. Move the bar from side to side until you find a balance point. Is it possible to predict that position?

Make some loops out of regular hexagons. What rules can you discover?

Think of a number, add one, double it, take away 3, add the number you first thought of, add 7, divide by 3 and take away the number you first thought of. You should now be left with 2. How do I. . . .

The diagram illustrates the formula: 1 + 3 + 5 + ... + (2n - 1) = n² Use the diagram to show that any odd number is the difference of two squares.

The squares of any 8 consecutive numbers can be arranged into two sets of four numbers with the same sum. True of false?

Many numbers can be expressed as the difference of two perfect squares. What do you notice about the numbers you CANNOT make?

Sets of integers like 3, 4, 5 are called Pythagorean Triples, because they could be the lengths of the sides of a right-angled triangle. Can you find any more?

Brian swims at twice the speed that a river is flowing, downstream from one moored boat to another and back again, taking 12 minutes altogether. How long would it have taken him in still water?

Account of an investigation which starts from the area of an annulus and leads to the formula for the difference of two squares.

Think of two whole numbers under 10, and follow the steps. I can work out both your numbers very quickly. How?

This article explains how to make your own magic square to mark a special occasion with the special date of your choice on the top line.

Can you find rectangles where the value of the area is the same as the value of the perimeter?

Find the five distinct digits N, R, I, C and H in the following nomogram

15 = 7 + 8 and 10 = 1 + 2 + 3 + 4. Can you say which numbers can be expressed as the sum of two or more consecutive integers?

Show that if you add 1 to the product of four consecutive numbers the answer is ALWAYS a perfect square.

Create some shapes by combining two or more rectangles. What can you say about the areas and perimeters of the shapes you can make?

First of all, pick the number of times a week that you would like to eat chocolate. Multiply this number by 2...

Arrange the numbers 1 to 16 into a 4 by 4 array. Choose a number. Cross out the numbers on the same row and column. Repeat this process. Add up you four numbers. Why do they always add up to 34?

Try entering different sets of numbers in the number pyramids. How does the total at the top change?

Pick a square within a multiplication square and add the numbers on each diagonal. What do you notice?

Pick the number of times a week that you eat chocolate. This number must be more than one but less than ten. Multiply this number by 2. Add 5 (for Sunday). Multiply by 50... Can you explain why it. . . .

What would you get if you continued this sequence of fraction sums? 1/2 + 2/1 = 2/3 + 3/2 = 3/4 + 4/3 =

Find some examples of pairs of numbers such that their sum is a factor of their product. eg. 4 + 12 = 16 and 4 × 12 = 48 and 16 is a factor of 48.

Think of a number and follow the machine's instructions... I know what your number is! Can you explain how I know?

Think of a number and follow my instructions. Tell me your answer, and I'll tell you what you started with! Can you explain how I know?

Take any pair of two digit numbers x=ab and y=cd where, without loss of generality, ab > cd . Form two 4 digit numbers r=abcd and s=cdab and calculate: {r^2 - s^2} /{x^2 - y^2}.

If a two digit number has its digits reversed and the smaller of the two numbers is subtracted from the larger, prove the difference can never be prime.

A task which depends on members of the group noticing the needs of others and responding.

Crosses can be drawn on number grids of various sizes. What do you notice when you add opposite ends?

A country has decided to have just two different coins, 3z and 5z coins. Which totals can be made? Is there a largest total that cannot be made? How do you know?

Robert noticed some interesting patterns when he highlighted square numbers in a spreadsheet. Can you prove that the patterns will continue?

Think of a two digit number, reverse the digits, and add the numbers together. Something special happens...

The Number Jumbler can always work out your chosen symbol. Can you work out how?

If you take a three by three square on a 1-10 addition square and multiply the diagonally opposite numbers together, what is the difference between these products. Why?

My two digit number is special because adding the sum of its digits to the product of its digits gives me my original number. What could my number be?

Choose any four consecutive even numbers. Multiply the two middle numbers together. Multiply the first and last numbers. Now subtract your second answer from the first. Try it with your own. . . .

A box has faces with areas 3, 12 and 25 square centimetres. What is the volume of the box?

What is the total number of squares that can be made on a 5 by 5 geoboard?

The sum of the numbers 4 and 1 [1/3] is the same as the product of 4 and 1 [1/3]; that is to say 4 + 1 [1/3] = 4 � 1 [1/3]. What other numbers have the sum equal to the product and can this be so. . . .

32 x 38 = 30 x 40 + 2 x 8; 34 x 36 = 30 x 40 + 4 x 6; 56 x 54 = 50 x 60 + 6 x 4; 73 x 77 = 70 x 80 + 3 x 7 Verify and generalise if possible.