Find all the ways of placing the numbers 1 to 9 on a W shape, with 3 numbers on each leg, so that each set of 3 numbers has the same total.

Jo made a cube from some smaller cubes, painted some of the faces of the large cube, and then took it apart again. 45 small cubes had no paint on them at all. How many small cubes did Jo use?

Can you find a rule which connects consecutive triangular numbers?

Imagine a large cube made from small red cubes being dropped into a pot of yellow paint. How many of the small cubes will have yellow paint on their faces?

Some students have been working out the number of strands needed for different sizes of cable. Can you make sense of their solutions?

Show that all pentagonal numbers are one third of a triangular number.

Can you find a rule which relates triangular numbers to square numbers?

Kyle and his teacher disagree about his test score - who is right?

Imagine starting with one yellow cube and covering it all over with a single layer of red cubes, and then covering that cube with a layer of blue cubes. How many red and blue cubes would you need?

Arrange the numbers 1 to 16 into a 4 by 4 array. Choose a number. Cross out the numbers on the same row and column. Repeat this process. Add up you four numbers. Why do they always add up to 34?

Jo has three numbers which she adds together in pairs. When she does this she has three different totals: 11, 17 and 22 What are the three numbers Jo had to start with?”

My two digit number is special because adding the sum of its digits to the product of its digits gives me my original number. What could my number be?

Take a few whole numbers away from a triangle number. If you know the mean of the remaining numbers can you find the triangle number and which numbers were removed?

Find some triples of whole numbers a, b and c such that a^2 + b^2 + c^2 is a multiple of 4. Is it necessarily the case that a, b and c must all be even? If so, can you explain why?

Take any two numbers between 0 and 1. Prove that the sum of the numbers is always less than one plus their product?

Take any pair of two digit numbers x=ab and y=cd where, without loss of generality, ab > cd . Form two 4 digit numbers r=abcd and s=cdab and calculate: {r^2 - s^2} /{x^2 - y^2}.

We can show that (x + 1)² = x² + 2x + 1 by considering the area of an (x + 1) by (x + 1) square. Show in a similar way that (x + 2)² = x² + 4x + 4

Choose four consecutive whole numbers. Multiply the first and last numbers together. Multiply the middle pair together. What do you notice?

A, B & C own a half, a third and a sixth of a coin collection. Each grab some coins, return some, then share equally what they had put back, finishing with their own share. How rich are they?

When number pyramids have a sequence on the bottom layer, some interesting patterns emerge...

Make some loops out of regular hexagons. What rules can you discover?

If you take a three by three square on a 1-10 addition square and multiply the diagonally opposite numbers together, what is the difference between these products. Why?

List any 3 numbers. It is always possible to find a subset of adjacent numbers that add up to a multiple of 3. Can you explain why and prove it?

I added together the first 'n' positive integers and found that my answer was a 3 digit number in which all the digits were the same...

Janine noticed, while studying some cube numbers, that if you take three consecutive whole numbers and multiply them together and then add the middle number of the three, you get the middle number. . . .

Use the numbers in the box below to make the base of a top-heavy pyramid whose top number is 200.

How many winning lines can you make in a three-dimensional version of noughts and crosses?

Think of a two digit number, reverse the digits, and add the numbers together. Something special happens...

The nth term of a sequence is given by the formula n^3 + 11n . Find the first four terms of the sequence given by this formula and the first term of the sequence which is bigger than one million. . . .

Pick a square within a multiplication square and add the numbers on each diagonal. What do you notice?

Robert noticed some interesting patterns when he highlighted square numbers in a spreadsheet. Can you prove that the patterns will continue?

This article explains how to make your own magic square to mark a special occasion with the special date of your choice on the top line.

How could Penny, Tom and Matthew work out how many chocolates there are in different sized boxes?

Crosses can be drawn on number grids of various sizes. What do you notice when you add opposite ends?

However did we manage before calculators? Is there an efficient way to do a square root if you have to do the work yourself?

32 x 38 = 30 x 40 + 2 x 8; 34 x 36 = 30 x 40 + 4 x 6; 56 x 54 = 50 x 60 + 6 x 4; 73 x 77 = 70 x 80 + 3 x 7 Verify and generalise if possible.

15 = 7 + 8 and 10 = 1 + 2 + 3 + 4. Can you say which numbers can be expressed as the sum of two or more consecutive integers?

Try entering different sets of numbers in the number pyramids. How does the total at the top change?

The opposite vertices of a square have coordinates (a,b) and (c,d). What are the coordinates of the other vertices?

Pick the number of times a week that you eat chocolate. This number must be more than one but less than ten. Multiply this number by 2. Add 5 (for Sunday). Multiply by 50... Can you explain why it. . . .

Semicircles are drawn on the sides of a rectangle. Prove that the sum of the areas of the four crescents is equal to the area of the rectangle.

Two motorboats travelling up and down a lake at constant speeds leave opposite ends A and B at the same instant, passing each other, for the first time 600 metres from A, and on their return, 400. . . .

Find some examples of pairs of numbers such that their sum is a factor of their product. eg. 4 + 12 = 16 and 4 × 12 = 48 and 16 is a factor of 48.

How many more miles must the car travel before the numbers on the milometer and the trip meter contain the same digits in the same order?

What would you get if you continued this sequence of fraction sums? 1/2 + 2/1 = 2/3 + 3/2 = 3/4 + 4/3 =

If the sides of the triangle in the diagram are 3, 4 and 5, what is the area of the shaded square?

A moveable screen slides along a mirrored corridor towards a centrally placed light source. A ray of light from that source is directed towards a wall of the corridor, which it strikes at 45 degrees. . . .