A cyclist and a runner start off simultaneously around a race track each going at a constant speed. The cyclist goes all the way around and then catches up with the runner. He then instantly turns. . . .

Watch these videos to see how Phoebe, Alice and Luke chose to draw 7 squares. How would they draw 100?

Imagine a large cube made from small red cubes being dropped into a pot of yellow paint. How many of the small cubes will have yellow paint on their faces?

How could Penny, Tom and Matthew work out how many chocolates there are in different sized boxes?

Two motorboats travelling up and down a lake at constant speeds leave opposite ends A and B at the same instant, passing each other, for the first time 600 metres from A, and on their return, 400. . . .

Imagine starting with one yellow cube and covering it all over with a single layer of red cubes, and then covering that cube with a layer of blue cubes. How many red and blue cubes would you need?

Some students have been working out the number of strands needed for different sizes of cable. Can you make sense of their solutions?

Jo made a cube from some smaller cubes, painted some of the faces of the large cube, and then took it apart again. 45 small cubes had no paint on them at all. How many small cubes did Jo use?

How many winning lines can you make in a three-dimensional version of noughts and crosses?

Can you find a rule which connects consecutive triangular numbers?

Show that all pentagonal numbers are one third of a triangular number.

Can you find a rule which relates triangular numbers to square numbers?

When number pyramids have a sequence on the bottom layer, some interesting patterns emerge...

Pick a square within a multiplication square and add the numbers on each diagonal. What do you notice?

This article explains how to make your own magic square to mark a special occasion with the special date of your choice on the top line.

Jo has three numbers which she adds together in pairs. When she does this she has three different totals: 11, 17 and 22 What are the three numbers Jo had to start with?”

What is the ratio of the area of a square inscribed in a semicircle to the area of the square inscribed in the entire circle?

We can show that (x + 1)² = x² + 2x + 1 by considering the area of an (x + 1) by (x + 1) square. Show in a similar way that (x + 2)² = x² + 4x + 4

How good are you at finding the formula for a number pattern ?

Find all the ways of placing the numbers 1 to 9 on a W shape, with 3 numbers on each leg, so that each set of 3 numbers has the same total.

First of all, pick the number of times a week that you would like to eat chocolate. Multiply this number by 2...

List any 3 numbers. It is always possible to find a subset of adjacent numbers that add up to a multiple of 3. Can you explain why and prove it?

Polygons drawn on square dotty paper have dots on their perimeter (p) and often internal (i) ones as well. Find a relationship between p, i and the area of the polygons.

Try entering different sets of numbers in the number pyramids. How does the total at the top change?

Can you see how to build a harmonic triangle? Can you work out the next two rows?

Can you find rectangles where the value of the area is the same as the value of the perimeter?

Make some loops out of regular hexagons. What rules can you discover?

The opposite vertices of a square have coordinates (a,b) and (c,d). What are the coordinates of the other vertices?

Janine noticed, while studying some cube numbers, that if you take three consecutive whole numbers and multiply them together and then add the middle number of the three, you get the middle number. . . .

Find some examples of pairs of numbers such that their sum is a factor of their product. eg. 4 + 12 = 16 and 4 × 12 = 48 and 16 is a factor of 48.

Think of a number, add one, double it, take away 3, add the number you first thought of, add 7, divide by 3 and take away the number you first thought of. You should now be left with 2. How do I. . . .

The sum of the numbers 4 and 1 [1/3] is the same as the product of 4 and 1 [1/3]; that is to say 4 + 1 [1/3] = 4 � 1 [1/3]. What other numbers have the sum equal to the product and can this be so. . . .

15 = 7 + 8 and 10 = 1 + 2 + 3 + 4. Can you say which numbers can be expressed as the sum of two or more consecutive integers?

Can you figure out how sequences of beach huts are generated?

Crosses can be drawn on number grids of various sizes. What do you notice when you add opposite ends?

Think of two whole numbers under 10, and follow the steps. I can work out both your numbers very quickly. How?

Take any pair of two digit numbers x=ab and y=cd where, without loss of generality, ab > cd . Form two 4 digit numbers r=abcd and s=cdab and calculate: {r^2 - s^2} /{x^2 - y^2}.

My two digit number is special because adding the sum of its digits to the product of its digits gives me my original number. What could my number be?

Brian swims at twice the speed that a river is flowing, downstream from one moored boat to another and back again, taking 12 minutes altogether. How long would it have taken him in still water?

Play around with the Fibonacci sequence and discover some surprising results!

Charlie likes tablecloths that use as many colours as possible, but insists that his tablecloths have some symmetry. Can you work out how many colours he needs for different tablecloth designs?

Use the numbers in the box below to make the base of a top-heavy pyramid whose top number is 200.

Pick the number of times a week that you eat chocolate. This number must be more than one but less than ten. Multiply this number by 2. Add 5 (for Sunday). Multiply by 50... Can you explain why it. . . .

If the sides of the triangle in the diagram are 3, 4 and 5, what is the area of the shaded square?

What would you get if you continued this sequence of fraction sums? 1/2 + 2/1 = 2/3 + 3/2 = 3/4 + 4/3 =

A circle of radius r touches two sides of a right angled triangle, sides x and y, and has its centre on the hypotenuse. Can you prove the formula linking x, y and r?

Choose four consecutive whole numbers. Multiply the first and last numbers together. Multiply the middle pair together. What do you notice?

Create some shapes by combining two or more rectangles. What can you say about the areas and perimeters of the shapes you can make?