What is the ratio of the area of a square inscribed in a semicircle to the area of the square inscribed in the entire circle?

Manufacturers need to minimise the amount of material used to make their product. What is the best cross-section for a gutter?

A circle of radius r touches two sides of a right angled triangle, sides x and y, and has its centre on the hypotenuse. Can you prove the formula linking x, y and r?

Triangle ABC is an equilateral triangle with three parallel lines going through the vertices. Calculate the length of the sides of the triangle if the perpendicular distances between the parallel. . . .

Can you make sense of these three proofs of Pythagoras' Theorem?

Two motorboats travelling up and down a lake at constant speeds leave opposite ends A and B at the same instant, passing each other, for the first time 600 metres from A, and on their return, 400. . . .

A cyclist and a runner start off simultaneously around a race track each going at a constant speed. The cyclist goes all the way around and then catches up with the runner. He then instantly turns. . . .

Sets of integers like 3, 4, 5 are called Pythagorean Triples, because they could be the lengths of the sides of a right-angled triangle. Can you find any more?

If the hypotenuse (base) length is 100cm and if an extra line splits the base into 36cm and 64cm parts, what were the side lengths for the original right-angled triangle?

Two semi-circles (each of radius 1/2) touch each other, and a semi-circle of radius 1 touches both of them. Find the radius of the circle which touches all three semi-circles.

Semicircles are drawn on the sides of a rectangle. Prove that the sum of the areas of the four crescents is equal to the area of the rectangle.

How many winning lines can you make in a three-dimensional version of noughts and crosses?

This shape comprises four semi-circles. What is the relationship between the area of the shaded region and the area of the circle on AB as diameter?

Medieval stonemasons used a method to construct octagons using ruler and compasses... Is the octagon regular? Proof please.

The opposite vertices of a square have coordinates (a,b) and (c,d). What are the coordinates of the other vertices?

What is the total number of squares that can be made on a 5 by 5 geoboard?

Jo made a cube from some smaller cubes, painted some of the faces of the large cube, and then took it apart again. 45 small cubes had no paint on them at all. How many small cubes did Jo use?

Imagine starting with one yellow cube and covering it all over with a single layer of red cubes, and then covering that cube with a layer of blue cubes. How many red and blue cubes would you need?

Find the missing angle between the two secants to the circle when the two angles at the centre subtended by the arcs created by the intersections of the secants and the circle are 50 and 120 degrees.

How could Penny, Tom and Matthew work out how many chocolates there are in different sized boxes?

Show that all pentagonal numbers are one third of a triangular number.

How good are you at finding the formula for a number pattern ?

Can you show that you can share a square pizza equally between two people by cutting it four times using vertical, horizontal and diagonal cuts through any point inside the square?

Can you find a rule which relates triangular numbers to square numbers?

Pick a square within a multiplication square and add the numbers on each diagonal. What do you notice?

Polygons drawn on square dotty paper have dots on their perimeter (p) and often internal (i) ones as well. Find a relationship between p, i and the area of the polygons.

The heptathlon is an athletics competition consisting of 7 events. Can you make sense of the scoring system in order to advise a heptathlete on the best way to reach her target?

Watch these videos to see how Phoebe, Alice and Luke chose to draw 7 squares. How would they draw 100?

A box has faces with areas 3, 12 and 25 square centimetres. What is the volume of the box?

A little bit of algebra explains this 'magic'. Ask a friend to pick 3 consecutive numbers and to tell you a multiple of 3. Then ask them to add the four numbers and multiply by 67, and to tell you. . . .

Imagine a large cube made from small red cubes being dropped into a pot of yellow paint. How many of the small cubes will have yellow paint on their faces?

Can you find a rule which connects consecutive triangular numbers?

If the sides of the triangle in the diagram are 3, 4 and 5, what is the area of the shaded square?

Try entering different sets of numbers in the number pyramids. How does the total at the top change?

Play around with the Fibonacci sequence and discover some surprising results!

Find all the ways of placing the numbers 1 to 9 on a W shape, with 3 numbers on each leg, so that each set of 3 numbers has the same total.

A task which depends on members of the group noticing the needs of others and responding.

The sums of the squares of three related numbers is also a perfect square - can you explain why?

When number pyramids have a sequence on the bottom layer, some interesting patterns emerge...

Can you find rectangles where the value of the area is the same as the value of the perimeter?

Choose four consecutive whole numbers. Multiply the first and last numbers together. Multiply the middle pair together. What do you notice?

This article explains how to make your own magic square to mark a special occasion with the special date of your choice on the top line.

Charlie likes tablecloths that use as many colours as possible, but insists that his tablecloths have some symmetry. Can you work out how many colours he needs for different tablecloth designs?

Find some examples of pairs of numbers such that their sum is a factor of their product. eg. 4 + 12 = 16 and 4 × 12 = 48 and 16 is a factor of 48.

Show that if you add 1 to the product of four consecutive numbers the answer is ALWAYS a perfect square.

Arrange the numbers 1 to 16 into a 4 by 4 array. Choose a number. Cross out the numbers on the same row and column. Repeat this process. Add up you four numbers. Why do they always add up to 34?

A moveable screen slides along a mirrored corridor towards a centrally placed light source. A ray of light from that source is directed towards a wall of the corridor, which it strikes at 45 degrees. . . .

What would you get if you continued this sequence of fraction sums? 1/2 + 2/1 = 2/3 + 3/2 = 3/4 + 4/3 =