Investigate $1^n + 19^n + 20^n + 51^n + 57^n + 80^n + 82^n $ and $2^n + 12^n + 31^n + 40^n + 69^n + 71^n + 85^n$ for different values of n.

When I type a sequence of letters my calculator gives the product of all the numbers in the corresponding memories. What numbers should I store so that when I type 'ONE' it returns 1, and when I type. . . .

What is the remainder when 2^{164}is divided by 7?

Visitors to Earth from the distant planet of Zub-Zorna were amazed when they found out that when the digits in this multiplication were reversed, the answer was the same! Find a way to explain. . . .

The number 10112359550561797752808988764044943820224719 is called a 'slippy number' because, when the last digit 9 is moved to the front, the new number produced is the slippy number multiplied by 9.

If you take a three by three square on a 1-10 addition square and multiply the diagonally opposite numbers together, what is the difference between these products. Why?

Powers of numbers behave in surprising ways. Take a look at some of these and try to explain why they are true.

Amy has a box containing domino pieces but she does not think it is a complete set. She has 24 dominoes in her box and there are 125 spots on them altogether. Which of her domino pieces are missing?

The number of plants in Mr McGregor's magic potting shed increases overnight. He'd like to put the same number of plants in each of his gardens, planting one garden each day. How can he do it?

This task combines spatial awareness with addition and multiplication.

56 406 is the product of two consecutive numbers. What are these two numbers?

Find the number which has 8 divisors, such that the product of the divisors is 331776.

Choose any 3 digits and make a 6 digit number by repeating the 3 digits in the same order (e.g. 594594). Explain why whatever digits you choose the number will always be divisible by 7, 11 and 13.

Watch our videos of multiplication methods that you may not have met before. Can you make sense of them?

What is the lowest number which always leaves a remainder of 1 when divided by each of the numbers from 2 to 10?

Work out Tom's number from the answers he gives his friend. He will only answer 'yes' or 'no'.

You can work out the number someone else is thinking of as follows. Ask a friend to think of any natural number less than 100. Then ask them to tell you the remainders when this number is divided by. . . .

Using some or all of the operations of addition, subtraction, multiplication and division and using the digits 3, 3, 8 and 8 each once and only once make an expression equal to 24.

This number has 903 digits. What is the sum of all 903 digits?

Number problems at primary level that may require resilience.

In November, Liz was interviewed for an article on a parents' website about learning times tables. Read the article here.

The Scot, John Napier, invented these strips about 400 years ago to help calculate multiplication and division. Can you work out how to use Napier's bones to find the answer to these multiplications?

What is the least square number which commences with six two's?

Can you design a new shape for the twenty-eight squares and arrange the numbers in a logical way? What patterns do you notice?

This challenge asks you to investigate the total number of cards that would be sent if four children send one to all three others. How many would be sent if there were five children? Six?

Using the numbers 1, 2, 3, 4 and 5 once and only once, and the operations x and ÷ once and only once, what is the smallest whole number you can make?

Look at what happens when you take a number, square it and subtract your answer. What kind of number do you get? Can you prove it?

Skippy and Anna are locked in a room in a large castle. The key to that room, and all the other rooms, is a number. The numbers are locked away in a problem. Can you help them to get out?

This task offers an opportunity to explore all sorts of number relationships, but particularly multiplication.

The value of the circle changes in each of the following problems. Can you discover its value in each problem?

All the girls would like a puzzle each for Christmas and all the boys would like a book each. Solve the riddle to find out how many puzzles and books Santa left.

Amazing as it may seem the three fives remaining in the following `skeleton' are sufficient to reconstruct the entire long division sum.

Your vessel, the Starship Diophantus, has become damaged in deep space. Can you use your knowledge of times tables and some lightning reflexes to survive?

What is the largest number you can make using the three digits 2, 3 and 4 in any way you like, using any operations you like? You can only use each digit once.

This article for teachers looks at how teachers can use problems from the NRICH site to help them teach division.

Watch this animation. What do you notice? What happens when you try more or fewer cubes in a bundle?

Can you see why 2 by 2 could be 5? Can you predict what 2 by 10 will be?

Here are the prices for 1st and 2nd class mail within the UK. You have an unlimited number of each of these stamps. Which stamps would you need to post a parcel weighing 825g?

This problem is based on the story of the Pied Piper of Hamelin. Investigate the different numbers of people and rats there could have been if you know how many legs there are altogether!

Mr McGregor has a magic potting shed. Overnight, the number of plants in it doubles. He'd like to put the same number of plants in each of three gardens, planting one garden each day. Can he do it?

When the number x 1 x x x is multiplied by 417 this gives the answer 9 x x x 0 5 7. Find the missing digits, each of which is represented by an "x" .

Given the products of adjacent cells, can you complete this Sudoku?

Using the statements, can you work out how many of each type of rabbit there are in these pens?

Can you find different ways of creating paths using these paving slabs?

Each clue in this Sudoku is the product of the two numbers in adjacent cells.

This challenge combines addition, multiplication, perseverance and even proof.

Four Go game for an adult and child. Will you be the first to have four numbers in a row on the number line?