56 406 is the product of two consecutive numbers. What are these two numbers?
Work out Tom's number from the answers he gives his friend. He will only answer 'yes' or 'no'.
What is the smallest number of answers you need to reveal in order to work out the missing headers?
Given the products of adjacent cells, can you complete this Sudoku?
The number 8888...88M9999...99 is divisible by 7 and it starts with the digit 8 repeated 50 times and ends with the digit 9 repeated 50 times. What is the value of the digit M?
6! = 6 x 5 x 4 x 3 x 2 x 1. The highest power of 2 that divides exactly into 6! is 4 since (6!) / (2^4 ) = 45. What is the highest power of two that divides exactly into 100!?
Using the digits 1, 2, 3, 4, 5, 6, 7 and 8, mulitply a two two digit numbers are multiplied to give a four digit number, so that the expression is correct. How many different solutions can you find?
The number 12 = 2^2 × 3 has 6 factors. What is the smallest natural number with exactly 36 factors?
Find the number which has 8 divisors, such that the product of the divisors is 331776.
The clues for this Sudoku are the product of the numbers in adjacent squares.
I'm thinking of a number. My number is both a multiple of 5 and a multiple of 6. What could my number be?
Each clue in this Sudoku is the product of the two numbers in adjacent cells.
What is the lowest number which always leaves a remainder of 1 when divided by each of the numbers from 2 to 10?
Your vessel, the Starship Diophantus, has become damaged in deep space. Can you use your knowledge of times tables and some lightning reflexes to survive?
Using the digits 1 to 9, the number 4396 can be written as the product of two numbers. Can you find the factors?
Find the highest power of 11 that will divide into 1000! exactly.
Play this game and see if you can figure out the computer's chosen number.
This problem is based on a code using two different prime numbers less than 10. You'll need to multiply them together and shift the alphabet forwards by the result. Can you decipher the code?
Number problems at primary level that may require resilience.
Visitors to Earth from the distant planet of Zub-Zorna were amazed when they found out that when the digits in this multiplication were reversed, the answer was the same! Find a way to explain. . . .
Make a set of numbers that use all the digits from 1 to 9, once and once only. Add them up. The result is divisible by 9. Add each of the digits in the new number. What is their sum? Now try some. . . .
These pictures and answers leave the viewer with the problem "What is the Question". Can you give the question and how the answer follows?
A game for 2 people using a pack of cards Turn over 2 cards and try to make an odd number or a multiple of 3.
Choose any four consecutive even numbers. Multiply the two middle numbers together. Multiply the first and last numbers. Now subtract your second answer from the first. Try it with your own. . . .
There is a clock-face where the numbers have become all mixed up. Can you find out where all the numbers have got to from these ten statements?
Ben’s class were cutting up number tracks. First they cut them into twos and added up the numbers on each piece. What patterns could they see?
You can work out the number someone else is thinking of as follows. Ask a friend to think of any natural number less than 100. Then ask them to tell you the remainders when this number is divided by. . . .
Using some or all of the operations of addition, subtraction, multiplication and division and using the digits 3, 3, 8 and 8 each once and only once make an expression equal to 24.
Mathematicians are always looking for efficient methods for solving problems. How efficient can you be?
Look on the back of any modern book and you will find an ISBN code. Take this code and calculate this sum in the way shown. Can you see what the answers always have in common?
Here is a picnic that Petros and Michael are going to share equally. Can you tell us what each of them will have?
Gabriel multiplied together some numbers and then erased them. Can you figure out where each number was?
Choose any 3 digits and make a 6 digit number by repeating the 3 digits in the same order (e.g. 594594). Explain why whatever digits you choose the number will always be divisible by 7, 11 and 13.
This Sudoku requires you to do some working backwards before working forwards.
Choose two digits and arrange them to make two double-digit numbers. Now add your double-digit numbers. Now add your single digit numbers. Divide your double-digit answer by your single-digit answer. . . .
After training hard, these two children have improved their results. Can you work out the length or height of their first jumps?
Alf describes how the Gattegno chart helped a class of 7-9 year olds gain an awareness of place value and of the inverse relationship between multiplication and division.
Does this 'trick' for calculating multiples of 11 always work? Why or why not?
Take the number 6 469 693 230 and divide it by the first ten prime numbers and you'll find the most beautiful, most magic of all numbers. What is it?
Take any four digit number. Move the first digit to the end and move the rest along. Now add your two numbers. Did you get a multiple of 11?
Look at what happens when you take a number, square it and subtract your answer. What kind of number do you get? Can you prove it?
What is the remainder when 2^{164}is divided by 7?
Here are the prices for 1st and 2nd class mail within the UK. You have an unlimited number of each of these stamps. Which stamps would you need to post a parcel weighing 825g?
The Scot, John Napier, invented these strips about 400 years ago to help calculate multiplication and division. Can you work out how to use Napier's bones to find the answer to these multiplications?
This article for teachers looks at how teachers can use problems from the NRICH site to help them teach division.
A game for 2 people. Use your skills of addition, subtraction, multiplication and division to blast the asteroids.
When I type a sequence of letters my calculator gives the product of all the numbers in the corresponding memories. What numbers should I store so that when I type 'ONE' it returns 1, and when I type. . . .
Can you put these four calculations into order of difficulty? How did you decide?
Mr McGregor has a magic potting shed. Overnight, the number of plants in it doubles. He'd like to put the same number of plants in each of three gardens, planting one garden each day. Can he do it?