If you take a three by three square on a 1-10 addition square and multiply the diagonally opposite numbers together, what is the difference between these products. Why?

In the following sum the letters A, B, C, D, E and F stand for six distinct digits. Find all the ways of replacing the letters with digits so that the arithmetic is correct.

Arrange the numbers 1 to 16 into a 4 by 4 array. Choose a number. Cross out the numbers on the same row and column. Repeat this process. Add up you four numbers. Why do they always add up to 34?

Crosses can be drawn on number grids of various sizes. What do you notice when you add opposite ends?

This article explains how to make your own magic square to mark a special occasion with the special date of your choice on the top line.

Try entering different sets of numbers in the number pyramids. How does the total at the top change?

Find the values of the nine letters in the sum: FOOT + BALL = GAME

What is the sum of all the digits in all the integers from one to one million?

The letters in the following addition sum represent the digits 1 ... 9. If A=3 and D=2, what number is represented by "CAYLEY"?

How many solutions can you find to this sum? Each of the different letters stands for a different number.

This addition sum uses all ten digits 0, 1, 2...9 exactly once. Find the sum and show that the one you give is the only possibility.

What is the largest number you can make using the three digits 2, 3 and 4 in any way you like, using any operations you like? You can only use each digit once.

This article gives you a few ideas for understanding the Got It! game and how you might find a winning strategy.

When I type a sequence of letters my calculator gives the product of all the numbers in the corresponding memories. What numbers should I store so that when I type 'ONE' it returns 1, and when I type. . . .

Investigate $1^n + 19^n + 20^n + 51^n + 57^n + 80^n + 82^n $ and $2^n + 12^n + 31^n + 40^n + 69^n + 71^n + 85^n$ for different values of n.

Can you arrange the digits 1,2,3,4,5,6,7,8,9 into three 3-digit numbers such that their total is close to 1500?

Whenever two chameleons of different colours meet they change colour to the third colour. Describe the shortest sequence of meetings in which all the chameleons change to green if you start with 12. . . .

Got It game for an adult and child. How can you play so that you know you will always win?

A combination mechanism for a safe comprises thirty-two tumblers numbered from one to thirty-two in such a way that the numbers in each wheel total 132... Could you open the safe?

Can you explain the strategy for winning this game with any target?

The country Sixtania prints postage stamps with only three values 6 lucres, 10 lucres and 15 lucres (where the currency is in lucres).Which values cannot be made up with combinations of these postage. . . .

Try out some calculations. Are you surprised by the results?

This Sudoku, based on differences. Using the one clue number can you find the solution?

Make your own double-sided magic square. But can you complete both sides once you've made the pieces?

Here is a chance to play a version of the classic Countdown Game.

Here is a chance to play a fractions version of the classic Countdown Game.

This article suggests some ways of making sense of calculations involving positive and negative numbers.

If you wrote all the possible four digit numbers made by using each of the digits 2, 4, 5, 7 once, what would they add up to?

Is it possible to rearrange the numbers 1,2......12 around a clock face in such a way that every two numbers in adjacent positions differ by any of 3, 4 or 5 hours?

Some Games That May Be Nice or Nasty for an adult and child. Use your knowledge of place value to beat your opponent.

You have four jugs of 9, 7, 4 and 2 litres capacity. The 9 litre jug is full of wine, the others are empty. Can you divide the wine into three equal quantities?

Do you notice anything about the solutions when you add and/or subtract consecutive negative numbers?

Investigate the different ways that fifteen schools could have given money in a charity fundraiser.

We start with one yellow cube and build around it to make a 3x3x3 cube with red cubes. Then we build around that red cube with blue cubes and so on. How many cubes of each colour have we used?

There are exactly 3 ways to add 4 odd numbers to get 10. Find all the ways of adding 8 odd numbers to get 20. To be sure of getting all the solutions you will need to be systematic. What about. . . .

Use the numbers in the box below to make the base of a top-heavy pyramid whose top number is 200.

Delight your friends with this cunning trick! Can you explain how it works?

How can we help students make sense of addition and subtraction of negative numbers?

Using the 8 dominoes make a square where each of the columns and rows adds up to 8

Special clue numbers related to the difference between numbers in two adjacent cells and values of the stars in the "constellation" make this a doubly interesting problem.

Find out about Magic Squares in this article written for students. Why are they magic?!

Add or subtract the two numbers on the spinners and try to complete a row of three. Are there some numbers that are good to aim for?

This challenge is to make up YOUR OWN alphanumeric. Each letter represents a digit and where the same letter appears more than once it must represent the same digit each time.

Ann thought of 5 numbers and told Bob all the sums that could be made by adding the numbers in pairs. The list of sums is 6, 7, 8, 8, 9, 9, 10,10, 11, 12. Help Bob to find out which numbers Ann was. . . .

Using some or all of the operations of addition, subtraction, multiplication and division and using the digits 3, 3, 8 and 8 each once and only once make an expression equal to 24.

Choose any three by three square of dates on a calendar page...