Can you put plus signs in so this is true? 1 2 3 4 5 6 7 8 9 = 99 How many ways can you do it?

Find the sum and difference between a pair of two-digit numbers. Now find the sum and difference between the sum and difference! What happens?

This task, written for the National Young Mathematicians' Award 2016, invites you to explore the different combinations of scores that you might get on these dart boards.

Can you see why 2 by 2 could be 5? Can you predict what 2 by 10 will be?

Can you put the numbers 1 to 8 into the circles so that the four calculations are correct?

There are 4 jugs which hold 9 litres, 7 litres, 4 litres and 2 litres. Find a way to pour 9 litres of drink from one jug to another until you are left with exactly 3 litres in three of the jugs.

Place six toy ladybirds into the box so that there are two ladybirds in every column and every row.

Winifred Wytsh bought a box each of jelly babies, milk jelly bears, yellow jelly bees and jelly belly beans. In how many different ways could she make a jolly jelly feast with 32 legs?

You have two egg timers. One takes 4 minutes exactly to empty and the other takes 7 minutes. What times in whole minutes can you measure and how?

You have 5 darts and your target score is 44. How many different ways could you score 44?

There are 78 prisoners in a square cell block of twelve cells. The clever prison warder arranged them so there were 25 along each wall of the prison block. How did he do it?

This challenge focuses on finding the sum and difference of pairs of two-digit numbers.

Place the numbers 1 to 10 in the circles so that each number is the difference between the two numbers just below it.

First Connect Three game for an adult and child. Use the dice numbers and either addition or subtraction to get three numbers in a straight line.

This task follows on from Build it Up and takes the ideas into three dimensions!

Benâ€™s class were cutting up number tracks. First they cut them into twos and added up the numbers on each piece. What patterns could they see?

This task, written for the National Young Mathematicians' Award 2016, focuses on 'open squares'. What would the next five open squares look like?

Using the statements, can you work out how many of each type of rabbit there are in these pens?

This magic square has operations written in it, to make it into a maze. Start wherever you like, go through every cell and go out a total of 15!

This problem is based on a code using two different prime numbers less than 10. You'll need to multiply them together and shift the alphabet forwards by the result. Can you decipher the code?

Place the numbers from 1 to 9 in the squares below so that the difference between joined squares is odd. How many different ways can you do this?

Can you find six numbers to go in the Daisy from which you can make all the numbers from 1 to a number bigger than 25?

The clockmaker's wife cut up his birthday cake to look like a clock face. Can you work out who received each piece?

This task, written for the National Young Mathematicians' Award 2016, involves open-topped boxes made with interlocking cubes. Explore the number of units of paint that are needed to cover the boxes. . . .

Different combinations of the weights available allow you to make different totals. Which totals can you make?

Three children are going to buy some plants for their birthdays. They will plant them within circular paths. How could they do this?

Arrange three 1s, three 2s and three 3s in this square so that every row, column and diagonal adds to the same total.

Look carefully at the numbers. What do you notice? Can you make another square using the numbers 1 to 16, that displays the same properties?

Try adding together the dates of all the days in one week. Now multiply the first date by 7 and add 21. Can you explain what happens?

There are 44 people coming to a dinner party. There are 15 square tables that seat 4 people. Find a way to seat the 44 people using all 15 tables, with no empty places.

48 is called an abundant number because it is less than the sum of its factors (without itself). Can you find some more abundant numbers?

Try entering different sets of numbers in the number pyramids. How does the total at the top change?

Arrange eight of the numbers between 1 and 9 in the Polo Square below so that each side adds to the same total.

Zumf makes spectacles for the residents of the planet Zargon, who have either 3 eyes or 4 eyes. How many lenses will Zumf need to make all the different orders for 9 families?

Exactly 195 digits have been used to number the pages in a book. How many pages does the book have?

This problem is based on the story of the Pied Piper of Hamelin. Investigate the different numbers of people and rats there could have been if you know how many legs there are altogether!

This article gives you a few ideas for understanding the Got It! game and how you might find a winning strategy.

A game for 2 people. Use your skills of addition, subtraction, multiplication and division to blast the asteroids.

A game for 2 people using a pack of cards Turn over 2 cards and try to make an odd number or a multiple of 3.

Add the sum of the squares of four numbers between 10 and 20 to the sum of the squares of three numbers less than 6 to make the square of another, larger, number.

Fill in the missing numbers so that adding each pair of corner numbers gives you the number between them (in the box).

Put the numbers 1, 2, 3, 4, 5, 6 into the squares so that the numbers on each circle add up to the same amount. Can you find the rule for giving another set of six numbers?

Mrs Morgan, the class's teacher, pinned numbers onto the backs of three children. Use the information to find out what the three numbers were.

In a square in which the houses are evenly spaced, numbers 3 and 10 are opposite each other. What is the smallest and what is the largest possible number of houses in the square?

There is a clock-face where the numbers have become all mixed up. Can you find out where all the numbers have got to from these ten statements?

Throughout these challenges, the touching faces of any adjacent dice must have the same number. Can you find a way of making the total on the top come to each number from 11 to 18 inclusive?

Investigate the different distances of these car journeys and find out how long they take.

Can you explain the strategy for winning this game with any target?