Five numbers added together in pairs produce: 0, 2, 4, 4, 6, 8, 9, 11, 13, 15 What are the five numbers?

The letters in the following addition sum represent the digits 1 ... 9. If A=3 and D=2, what number is represented by "CAYLEY"?

Different combinations of the weights available allow you to make different totals. Which totals can you make?

Can you find six numbers to go in the Daisy from which you can make all the numbers from 1 to a number bigger than 25?

Find the values of the nine letters in the sum: FOOT + BALL = GAME

Make your own double-sided magic square. But can you complete both sides once you've made the pieces?

How many solutions can you find to this sum? Each of the different letters stands for a different number.

Start by putting one million (1 000 000) into the display of your calculator. Can you reduce this to 7 using just the 7 key and add, subtract, multiply, divide and equals as many times as you like?

Can you each work out the number on your card? What do you notice? How could you sort the cards?

Place the numbers 1 to 10 in the circles so that each number is the difference between the two numbers just below it.

Place six toy ladybirds into the box so that there are two ladybirds in every column and every row.

Can you put the numbers 1 to 8 into the circles so that the four calculations are correct?

If you have only four weights, where could you place them in order to balance this equaliser?

This challenge extends the Plants investigation so now four or more children are involved.

This challenging activity involves finding different ways to distribute fifteen items among four sets, when the sets must include three, four, five and six items.

Place this "worm" on the 100 square and find the total of the four squares it covers. Keeping its head in the same place, what other totals can you make?

The clockmaker's wife cut up his birthday cake to look like a clock face. Can you work out who received each piece?

This problem is based on a code using two different prime numbers less than 10. You'll need to multiply them together and shift the alphabet forwards by the result. Can you decipher the code?

Three children are going to buy some plants for their birthdays. They will plant them within circular paths. How could they do this?

Write the numbers up to 64 in an interesting way so that the shape they make at the end is interesting, different, more exciting ... than just a square.

Can you see why 2 by 2 could be 5? Can you predict what 2 by 10 will be?

A group of children are using measuring cylinders but they lose the labels. Can you help relabel them?

This task, written for the National Young Mathematicians' Award 2016, invites you to explore the different combinations of scores that you might get on these dart boards.

There are 78 prisoners in a square cell block of twelve cells. The clever prison warder arranged them so there were 25 along each wall of the prison block. How did he do it?

How could you put eight beanbags in the hoops so that there are four in the blue hoop, five in the red and six in the yellow? Can you find all the ways of doing this?

This problem is based on the story of the Pied Piper of Hamelin. Investigate the different numbers of people and rats there could have been if you know how many legs there are altogether!

Try entering different sets of numbers in the number pyramids. How does the total at the top change?

This magic square has operations written in it, to make it into a maze. Start wherever you like, go through every cell and go out a total of 15!

These two group activities use mathematical reasoning - one is numerical, one geometric.

Use your logical-thinking skills to deduce how much Dan's crisps and ice-cream cost altogether.

Ben has five coins in his pocket. How much money might he have?

Add the sum of the squares of four numbers between 10 and 20 to the sum of the squares of three numbers less than 6 to make the square of another, larger, number.

Try adding together the dates of all the days in one week. Now multiply the first date by 7 and add 21. Can you explain what happens?

Look carefully at the numbers. What do you notice? Can you make another square using the numbers 1 to 16, that displays the same properties?

Benâ€™s class were cutting up number tracks. First they cut them into twos and added up the numbers on each piece. What patterns could they see?

This task, written for the National Young Mathematicians' Award 2016, focuses on 'open squares'. What would the next five open squares look like?

Can you make square numbers by adding two prime numbers together?

A game for 2 people using a pack of cards Turn over 2 cards and try to make an odd number or a multiple of 3.

There are 44 people coming to a dinner party. There are 15 square tables that seat 4 people. Find a way to seat the 44 people using all 15 tables, with no empty places.

A game for 2 people. Use your skills of addition, subtraction, multiplication and division to blast the asteroids.

This article gives you a few ideas for understanding the Got It! game and how you might find a winning strategy.

Zumf makes spectacles for the residents of the planet Zargon, who have either 3 eyes or 4 eyes. How many lenses will Zumf need to make all the different orders for 9 families?

Arrange eight of the numbers between 1 and 9 in the Polo Square below so that each side adds to the same total.

Exactly 195 digits have been used to number the pages in a book. How many pages does the book have?

Using the statements, can you work out how many of each type of rabbit there are in these pens?

There were chews for 2p, mini eggs for 3p, Chocko bars for 5p and lollypops for 7p in the sweet shop. What could each of the children buy with their money?

This Sudoku, based on differences. Using the one clue number can you find the solution?

In a Magic Square all the rows, columns and diagonals add to the 'Magic Constant'. How would you change the magic constant of this square?

This challenge focuses on finding the sum and difference of pairs of two-digit numbers.

Can you arrange 5 different digits (from 0 - 9) in the cross in the way described?