This addition sum uses all ten digits 0, 1, 2...9 exactly once. Find the sum and show that the one you give is the only possibility.

Got It game for an adult and child. How can you play so that you know you will always win?

Arrange the numbers 1 to 16 into a 4 by 4 array. Choose a number. Cross out the numbers on the same row and column. Repeat this process. Add up you four numbers. Why do they always add up to 34?

In the following sum the letters A, B, C, D, E and F stand for six distinct digits. Find all the ways of replacing the letters with digits so that the arithmetic is correct.

Can you explain the strategy for winning this game with any target?

If you take a three by three square on a 1-10 addition square and multiply the diagonally opposite numbers together, what is the difference between these products. Why?

Crosses can be drawn on number grids of various sizes. What do you notice when you add opposite ends?

Whenever two chameleons of different colours meet they change colour to the third colour. Describe the shortest sequence of meetings in which all the chameleons change to green if you start with 12. . . .

Is it possible to rearrange the numbers 1,2......12 around a clock face in such a way that every two numbers in adjacent positions differ by any of 3, 4 or 5 hours?

Try entering different sets of numbers in the number pyramids. How does the total at the top change?

This article gives you a few ideas for understanding the Got It! game and how you might find a winning strategy.

Delight your friends with this cunning trick! Can you explain how it works?

Do you notice anything about the solutions when you add and/or subtract consecutive negative numbers?

Use the numbers in the box below to make the base of a top-heavy pyramid whose top number is 200.

Choose any three by three square of dates on a calendar page...

Here is a chance to play a version of the classic Countdown Game.

How could you put eight beanbags in the hoops so that there are four in the blue hoop, five in the red and six in the yellow? Can you find all the ways of doing this?

This task follows on from Build it Up and takes the ideas into three dimensions!

Can you arrange the digits 1,2,3,4,5,6,7,8,9 into three 3-digit numbers such that their total is close to 1500?

There are 4 jugs which hold 9 litres, 7 litres, 4 litres and 2 litres. Find a way to pour 9 litres of drink from one jug to another until you are left with exactly 3 litres in three of the jugs.

This article explains how to make your own magic square to mark a special occasion with the special date of your choice on the top line.

We start with one yellow cube and build around it to make a 3x3x3 cube with red cubes. Then we build around that red cube with blue cubes and so on. How many cubes of each colour have we used?

Can you put plus signs in so this is true? 1 2 3 4 5 6 7 8 9 = 99 How many ways can you do it?

Try out some calculations. Are you surprised by the results?

This magic square has operations written in it, to make it into a maze. Start wherever you like, go through every cell and go out a total of 15!

Try adding together the dates of all the days in one week. Now multiply the first date by 7 and add 21. Can you explain what happens?

Watch this animation. What do you notice? What happens when you try more or fewer cubes in a bundle?

There are 44 people coming to a dinner party. There are 15 square tables that seat 4 people. Find a way to seat the 44 people using all 15 tables, with no empty places.

There are 78 prisoners in a square cell block of twelve cells. The clever prison warder arranged them so there were 25 along each wall of the prison block. How did he do it?

Three children are going to buy some plants for their birthdays. They will plant them within circular paths. How could they do this?

Three dice are placed in a row. Find a way to turn each one so that the three numbers on top of the dice total the same as the three numbers on the front of the dice. Can you find all the ways to do. . . .

You have 5 darts and your target score is 44. How many different ways could you score 44?

This dice train has been made using specific rules. How many different trains can you make?

This Sudoku, based on differences. Using the one clue number can you find the solution?

Winifred Wytsh bought a box each of jelly babies, milk jelly bears, yellow jelly bees and jelly belly beans. In how many different ways could she make a jolly jelly feast with 32 legs?

This problem is based on the story of the Pied Piper of Hamelin. Investigate the different numbers of people and rats there could have been if you know how many legs there are altogether!

I throw three dice and get 5, 3 and 2. Add the scores on the three dice. What do you get? Now multiply the scores. What do you notice?

Find the sum and difference between a pair of two-digit numbers. Now find the sum and difference between the sum and difference! What happens?

Benâ€™s class were cutting up number tracks. First they cut them into twos and added up the numbers on each piece. What patterns could they see?

This challenge focuses on finding the sum and difference of pairs of two-digit numbers.

This challenging activity involves finding different ways to distribute fifteen items among four sets, when the sets must include three, four, five and six items.

Arrange eight of the numbers between 1 and 9 in the Polo Square below so that each side adds to the same total.

This task, written for the National Young Mathematicians' Award 2016, invites you to explore the different combinations of scores that you might get on these dart boards.

Using the statements, can you work out how many of each type of rabbit there are in these pens?

Use your logical reasoning to work out how many cows and how many sheep there are in each field.

This challenge extends the Plants investigation so now four or more children are involved.

Tom and Ben visited Numberland. Use the maps to work out the number of points each of their routes scores.