You have 5 darts and your target score is 44. How many different ways could you score 44?

Fill in the missing numbers so that adding each pair of corner numbers gives you the number between them (in the box).

Zumf makes spectacles for the residents of the planet Zargon, who have either 3 eyes or 4 eyes. How many lenses will Zumf need to make all the different orders for 9 families?

Three children are going to buy some plants for their birthdays. They will plant them within circular paths. How could they do this?

There are 78 prisoners in a square cell block of twelve cells. The clever prison warder arranged them so there were 25 along each wall of the prison block. How did he do it?

This problem is based on the story of the Pied Piper of Hamelin. Investigate the different numbers of people and rats there could have been if you know how many legs there are altogether!

Winifred Wytsh bought a box each of jelly babies, milk jelly bears, yellow jelly bees and jelly belly beans. In how many different ways could she make a jolly jelly feast with 32 legs?

There are 44 people coming to a dinner party. There are 15 square tables that seat 4 people. Find a way to seat the 44 people using all 15 tables, with no empty places.

48 is called an abundant number because it is less than the sum of its factors (without itself). Can you find some more abundant numbers?

This task, written for the National Young Mathematicians' Award 2016, invites you to explore the different combinations of scores that you might get on these dart boards.

Try adding together the dates of all the days in one week. Now multiply the first date by 7 and add 21. Can you explain what happens?

On the planet Vuv there are two sorts of creatures. The Zios have 3 legs and the Zepts have 7 legs. The great planetary explorer Nico counted 52 legs. How many Zios and how many Zepts were there?

Place the digits 1 to 9 into the circles so that each side of the triangle adds to the same total.

This magic square has operations written in it, to make it into a maze. Start wherever you like, go through every cell and go out a total of 15!

There are 4 jugs which hold 9 litres, 7 litres, 4 litres and 2 litres. Find a way to pour 9 litres of drink from one jug to another until you are left with exactly 3 litres in three of the jugs.

Can you put plus signs in so this is true? 1 2 3 4 5 6 7 8 9 = 99 How many ways can you do it?

The clockmaker's wife cut up his birthday cake to look like a clock face. Can you work out who received each piece?

You have two egg timers. One takes 4 minutes exactly to empty and the other takes 7 minutes. What times in whole minutes can you measure and how?

Arrange three 1s, three 2s and three 3s in this square so that every row, column and diagonal adds to the same total.

Using the statements, can you work out how many of each type of rabbit there are in these pens?

In a Magic Square all the rows, columns and diagonals add to the 'Magic Constant'. How would you change the magic constant of this square?

What do the digits in the number fifteen add up to? How many other numbers have digits with the same total but no zeros?

This task follows on from Build it Up and takes the ideas into three dimensions!

Find a great variety of ways of asking questions which make 8.

Find the sum and difference between a pair of two-digit numbers. Now find the sum and difference between the sum and difference! What happens?

This challenge focuses on finding the sum and difference of pairs of two-digit numbers.

Can you arrange 5 different digits (from 0 - 9) in the cross in the way described?

Investigate the different distances of these car journeys and find out how long they take.

Cherri, Saxon, Mel and Paul are friends. They are all different ages. Can you find out the age of each friend using the information?

Using 3 rods of integer lengths, none longer than 10 units and not using any rod more than once, you can measure all the lengths in whole units from 1 to 10 units. How many ways can you do this?

Can you substitute numbers for the letters in these sums?

This group activity will encourage you to share calculation strategies and to think about which strategy might be the most efficient.

In how many ways could Mrs Beeswax put ten coins into her three puddings so that each pudding ended up with at least two coins?

Can you score 100 by throwing rings on this board? Is there more than way to do it?

Tom and Ben visited Numberland. Use the maps to work out the number of points each of their routes scores.

Here you see the front and back views of a dodecahedron. Each vertex has been numbered so that the numbers around each pentagonal face add up to 65. Can you find all the missing numbers?

How could you put eight beanbags in the hoops so that there are four in the blue hoop, five in the red and six in the yellow? Can you find all the ways of doing this?

Cassandra, David and Lachlan are brothers and sisters. They range in age between 1 year and 14 years. Can you figure out their exact ages from the clues?

Well now, what would happen if we lost all the nines in our number system? Have a go at writing the numbers out in this way and have a look at the multiplications table.

This task, written for the National Young Mathematicians' Award 2016, focuses on 'open squares'. What would the next five open squares look like?

Watch this animation. What do you notice? What happens when you try more or fewer cubes in a bundle?

There is a clock-face where the numbers have become all mixed up. Can you find out where all the numbers have got to from these ten statements?

There are to be 6 homes built on a new development site. They could be semi-detached, detached or terraced houses. How many different combinations of these can you find?

Look carefully at the numbers. What do you notice? Can you make another square using the numbers 1 to 16, that displays the same properties?

When I fold a 0-20 number line, I end up with 'stacks' of numbers on top of each other. These challenges involve varying the length of the number line and investigating the 'stack totals'.

A group of children are using measuring cylinders but they lose the labels. Can you help relabel them?

Can you see why 2 by 2 could be 5? Can you predict what 2 by 10 will be?

If the numbers 5, 7 and 4 go into this function machine, what numbers will come out?