This article explains how tree diagrams are constructed and helps you to understand how they can be used to calculate probabilities.
Can you work out which spinners were used to generate the frequency charts?
What percentage of students who graduate have never been to France?
What is the chance I will have a son who looks like me?
Alison and Charlie are playing a game. Charlie wants to go first so Alison lets him. Was that such a good idea?
When two closely matched teams play each other, what is the most likely result?
Chris and Jo put two red and four blue ribbons in a box. They each pick a ribbon from the box without looking. Jo wins if the two ribbons are the same colour. Is the game fair?
This interactivity invites you to make conjectures and explore probabilities of outcomes related to two independent events.
Imagine flipping a coin a number of times. Can you work out the probability you will get a head on at least one of the flips?
If everyone in your class picked a number from 1 to 225, do you think any two people would pick the same number?
Discs are flipped in the air. You win if all the faces show the same colour. What is the probability of winning?
Which of these games would you play to give yourself the best possible chance of winning a prize?
These strange dice are rolled. What is the probability that the sum obtained is an odd number?
Your partner chooses two beads and places them side by side behind a screen. What is the minimum number of guesses you would need to be sure of guessing the two beads and their positions?
How can we find out answers to questions like this if people often lie?
Simple models which help us to investigate how epidemics grow and die out.