I found these clocks in the Arts Centre at the University of Warwick intriguing - do they really need four clocks and what times would be ambiguous with only two or three of them?

Every day at noon a boat leaves Le Havre for New York while another boat leaves New York for Le Havre. The ocean crossing takes seven days. How many boats will each boat cross during their journey?

A bus route has a total duration of 40 minutes. Every 10 minutes, two buses set out, one from each end. How many buses will one bus meet on its way from one end to the other end?

In this matching game, you have to decide how long different events take.

At the time of writing the hour and minute hands of my clock are at right angles. How long will it be before they are at right angles again?

Anne completes a circuit around a circular track in 40 seconds. Brenda runs in the opposite direction and meets Anne every 15 seconds. How long does it take Brenda to run around the track?

Can you create a story that would describe the movement of the man shown on these graphs? Use the interactivity to try out our ideas.

How many times in twelve hours do the hands of a clock form a right angle? Use the interactivity to check your answers.

Use the interactivity to move Mr Pearson and his dog. Can you move him so that the graph shows a curve?

A game for two or more players that uses a knowledge of measuring tools. Spin the spinner and identify which jobs can be done with the measuring tool shown.

A train leaves on time. After it has gone 8 miles (at 33mph) the driver looks at his watch and sees that the hour hand is exactly over the minute hand. When did the train leave the station?

My cousin was 24 years old on Friday April 5th in 1974. On what day of the week was she born?

If it takes four men one day to build a wall, how long does it take 60,000 men to build a similar wall?

Alice's mum needs to go to each child's house just once and then back home again. How many different routes are there? Use the information to find out how long each road is on the route she took.

On a digital clock showing 24 hour time, over a whole day, how many times does a 5 appear? Is it the same number for a 12 hour clock over a whole day?

The pages of my calendar have got mixed up. Can you sort them out?

Can you explain why every year must contain at least one Friday the thirteenth?

On a digital 24 hour clock, at certain times, all the digits are consecutive. How many times like this are there between midnight and 7 a.m.?

Stuart's watch loses two minutes every hour. Adam's watch gains one minute every hour. Use the information to work out what time (the real time) they arrived at the airport.

Use the information to work out the timetable for the three trains travelling between City station and Farmland station.

Can you put these times on the clocks in order? You might like to arrange them in a circle.

What is the date in February 2002 where the 8 digits are palindromic if the date is written in the British way?

Use your knowledge of angles to work out how many degrees the hour and minute hands of a clock travel through in different amounts of time.

Two engines, at opposite ends of a single track railway line, set off towards one another just as a fly, sitting on the front of one of the engines, sets off flying along the railway line...

A paradox is a statement that seems to be both untrue and true at the same time. This article looks at a few examples and challenges you to investigate them for yourself.

These clocks have only one hand, but can you work out what time they are showing from the information?

These clocks have been reflected in a mirror. What times do they say?

Investigate the different distances of these car journeys and find out how long they take.

Can you put these mixed-up times in order? You could arrange them in a circle.

Use the clocks to investigate French decimal time in this problem. Can you see how this time system worked?

Measure problems at primary level that may require resilience.

Measure problems at primary level that require careful consideration.

Measure problems for primary learners to work on with others.

Noticing the regular movement of the Sun and the stars has led to a desire to measure time. This article for teachers and learners looks at the history of man's need to measure things.

How many of this company's coaches travelling in the opposite direction does the 10 am coach from Alphaton pass before reaching Betaville?

Calendars were one of the earliest calculating devices developed by civilizations. Find out about the Mayan calendar in this article.

Liitle Millennium Man was born on Saturday 1st January 2000 and he will retire on the first Saturday 1st January that occurs after his 60th birthday. How old will he be when he retires?

Read this article to find out the mathematical method for working out what day of the week each particular date fell on back as far as 1700.

This investigation explores using different shapes as the hands of the clock. What things occur as the the hands move.

Do you know the rhyme about ten green bottles hanging on a wall? If the first bottle fell at ten past five and the others fell down at 5 minute intervals, what time would the last bottle fall down?

Sometime during every hour the minute hand lies directly above the hour hand. At what time between 4 and 5 o'clock does this happen?

Look at the changes in results on some of the athletics track events at the Olympic Games in 1908 and 1948. Compare the results for 2012.

Measure problems for inquiring primary learners.

Can you order pictures of the development of a frog from frogspawn and of a bean seed growing into a plant?

How far have these students walked by the time the teacher's car reaches them after their bus broke down?

Nirmala and Riki live 9 kilometres away from the nearest market. They both want to arrive at the market at exactly noon. What time should each of them start riding their bikes?

July 1st 2001 was on a Sunday. July 1st 2002 was on a Monday. When did July 1st fall on a Monday again?

Follow the journey taken by this bird and let us know for how long and in what direction it must fly to return to its starting point.

In this version of the story of the hare and the tortoise, the race is 10 kilometres long. Can you work out how long the hare sleeps for using the information given?