Explore the effect of reflecting in two parallel mirror lines.

Explore the effect of combining enlargements.

These images are taken from the Topkapi Palace in Istanbul, Turkey. Can you work out the basic unit that makes up each pattern? Can you continue the pattern? Can you see any similarities and. . . .

Patterns that repeat in a line are strangely interesting. How many types are there and how do you tell one type from another?

See the effects of some combined transformations on a shape. Can you describe what the individual transformations do?

Some local pupils lost a geometric opportunity recently as they surveyed the cars in the car park. Did you know that car tyres, and the wheels that they on, are a rich source of geometry?

Sort the frieze patterns into seven pairs according to the way in which the motif is repeated.

This article describes the scope for practical exploration of tessellations both in and out of the classroom. It seems a golden opportunity to link art with maths, allowing the creative side of your. . . .

Does changing the order of transformations always/sometimes/never produce the same transformation?

Slide the pieces to move Khun Phaen past all the guards into the position on the right from which he can escape to freedom.

Draw a square. A second square of the same size slides around the first always maintaining contact and keeping the same orientation. How far does the dot travel?

Points off a rolling wheel make traces. What makes those traces have symmetry?

Which way of flipping over and/or turning this grid will give you the highest total? You'll need to imagine where the numbers will go in this tricky task!

A gallery of beautiful photos of cast ironwork friezes in Australia with a mathematical discussion of the classification of frieze patterns.

Why not challenge a friend to play this transformation game?

How will you decide which way of flipping over and/or turning the grid will give you the highest total?

This article looks at knight's moves on a chess board and introduces you to the idea of vectors and vector addition.

The first part of an investigation into how to represent numbers using geometric transformations that ultimately leads us to discover numbers not on the number line.

I took the graph y=4x+7 and performed four transformations. Can you find the order in which I could have carried out the transformations?

Investigate what happens to the equation of different lines when you translate them. Try to predict what will happen. Explain your findings.