Resources tagged with: Rotations

Filter by: Content type:
Age range:
Challenge level:

There are 35 results

Broad Topics > Transformations and constructions > Rotations

Making Maths: Indian Window Screen

Age 7 to 11 Challenge Level:

Can you recreate this Indian screen pattern? Can you make up similar patterns of your own?

Flip

Age 7 to 11 Challenge Level:

Can you picture where this letter "F" will be on the grid if you flip it in these different ways?

Notes on a Triangle

Age 11 to 14 Challenge Level:

Can you describe what happens in this film?

Peg Rotation

Age 7 to 11 Challenge Level:

Can you work out what kind of rotation produced this pattern of pegs in our pegboard?

Transforming the Letters

Age 7 to 11 Challenge Level:

What happens to these capital letters when they are rotated through one half turn, or flipped sideways and from top to bottom?

Shape Mapping

Age 7 to 11 Challenge Level:

What is the relationship between these first two shapes? Which shape relates to the third one in the same way? Can you explain why?

National Flags

Age 7 to 11 Challenge Level:

This problem explores the shapes and symmetries in some national flags.

Coordinate Challenge

Age 7 to 11 Challenge Level:

Use the clues about the symmetrical properties of these letters to place them on the grid.

Attractive Rotations

Age 11 to 14 Challenge Level:

Here is a chance to create some attractive images by rotating shapes through multiples of 90 degrees, or 30 degrees, or 72 degrees or...

Penta Play

Age 7 to 11 Challenge Level:

A shape and space game for 2, 3 or 4 players. Be the last person to be able to place a pentomino piece on the playing board.

Hexpentas

Age 5 to 11 Challenge Level:

How many different ways can you find of fitting five hexagons together? How will you know you have found all the ways?

Tiles in a Public Building

Age 7 to 11 Challenge Level:

What is the same and what is different about these tiling patterns and how do they contribute to the floor as a whole?

Turning Granny

Age 7 to 11 Challenge Level:

A brief video looking at how you can sometimes use symmetry to distinguish knots. Can you use this idea to investigate the differences between the granny knot and the reef knot?

Rolling Triangle

Age 11 to 14 Challenge Level:

The triangle ABC is equilateral. The arc AB has centre C, the arc BC has centre A and the arc CA has centre B. Explain how and why this shape can roll along between two parallel tracks.

Decoding Transformations

Age 11 to 14 Challenge Level:

See the effects of some combined transformations on a shape. Can you describe what the individual transformations do?

Transformation Game

Age 11 to 14 Challenge Level:

Why not challenge a friend to play this transformation game?

Transformation Tease

Age 7 to 11 Challenge Level:

What are the coordinates of this shape after it has been transformed in the ways described? Compare these with the original coordinates. What do you notice about the numbers?

Combining Transformations

Age 11 to 14 Challenge Level:

Does changing the order of transformations always/sometimes/never produce the same transformation?

Lafayette

Age 7 to 11 Challenge Level:

What mathematical words can be used to describe this floor covering? How many different shapes can you see inside this photograph?

Coordinating Classroom Coordinates

Age 7 to 11

This article describes a practical approach to enhance the teaching and learning of coordinates.

2010: A Year of Investigations

Age 5 to 14

This article for teachers suggests ideas for activities built around 10 and 2010.

Paint Rollers for Frieze Patterns.

Age 11 to 16

Proofs that there are only seven frieze patterns involve complicated group theory. The symmetries of a cylinder provide an easier approach.

Age 11 to 14 Challenge Level:

How many different symmetrical shapes can you make by shading triangles or squares?

Shaping up with Tessellations

Age 7 to 14

This article describes the scope for practical exploration of tessellations both in and out of the classroom. It seems a golden opportunity to link art with maths, allowing the creative side of your. . . .

Rollin' Rollin' Rollin'

Age 11 to 14 Challenge Level:

Two circles of equal radius touch at P. One circle is fixed whilst the other moves, rolling without slipping, all the way round. How many times does the moving coin revolve before returning to P?

John's Train Is on Time

Age 11 to 14 Challenge Level:

A train leaves on time. After it has gone 8 miles (at 33mph) the driver looks at his watch and sees that the hour hand is exactly over the minute hand. When did the train leave the station?

The Frieze Tree

Age 11 to 16

Patterns that repeat in a line are strangely interesting. How many types are there and how do you tell one type from another?

Frieze Patterns in Cast Iron

Age 11 to 16

A gallery of beautiful photos of cast ironwork friezes in Australia with a mathematical discussion of the classification of frieze patterns.

Weighty Problem

Age 11 to 14 Challenge Level:

The diagram shows a very heavy kitchen cabinet. It cannot be lifted but it can be pivoted around a corner. The task is to move it, without sliding, in a series of turns about the corners so that it. . . .

Simplifying Transformations

Age 11 to 14 Challenge Level:

How many different transformations can you find made up from combinations of R, S and their inverses? Can you be sure that you have found them all?

...on the Wall

Age 11 to 14 Challenge Level:

Explore the effect of reflecting in two intersecting mirror lines.

Illusion

Age 11 to 16 Challenge Level:

A security camera, taking pictures each half a second, films a cyclist going by. In the film, the cyclist appears to go forward while the wheels appear to go backwards. Why?

Overlap

Age 11 to 14 Challenge Level:

A red square and a blue square overlap so that the corner of the red square rests on the centre of the blue square. Show that, whatever the orientation of the red square, it covers a quarter of the. . . .

Clock Hands

Age 7 to 11 Challenge Level:

This investigation explores using different shapes as the hands of the clock. What things occur as the the hands move.

Robotic Rotations

Age 11 to 16 Challenge Level:

How did the the rotation robot make these patterns?