Given a 2 by 2 by 2 skeletal cube with one route `down' the cube. How many routes are there from A to B?

A circle rolls around the outside edge of a square so that its circumference always touches the edge of the square. Can you describe the locus of the centre of the circle?

Remember that you want someone following behind you to see where you went. Can yo work out how these patterns were created and recreate them?

A cheap and simple toy with lots of mathematics. Can you interpret the images that are produced? Can you predict the pattern that will be produced using different wheels?

Two circles are enclosed by a rectangle 12 units by x units. The distance between the centres of the two circles is x/3 units. How big is x?

Medieval stonemasons used a method to construct octagons using ruler and compasses... Is the octagon regular? Proof please.

Make five different quadrilaterals on a nine-point pegboard, without using the centre peg. Work out the angles in each quadrilateral you make. Now, what other relationships you can see?

Which is a better fit, a square peg in a round hole or a round peg in a square hole?

Can you find a relationship between the area of the crescents and the area of the triangle?

What is the ratio of the area of a square inscribed in a semicircle to the area of the square inscribed in the entire circle?

This shape comprises four semi-circles. What is the relationship between the area of the shaded region and the area of the circle on AB as diameter?

See if you can anticipate successive 'generations' of the two animals shown here.

Find the ratio of the outer shaded area to the inner area for a six pointed star and an eight pointed star.

Given a square ABCD of sides 10 cm, and using the corners as centres, construct four quadrants with radius 10 cm each inside the square. The four arcs intersect at P, Q, R and S. Find the. . . .

Equal circles can be arranged so that each circle touches four or six others. What percentage of the plane is covered by circles in each packing pattern? ...

The sides of a triangle are 25, 39 and 40 units of length. Find the diameter of the circumscribed circle.

The largest square which fits into a circle is ABCD and EFGH is a square with G and H on the line CD and E and F on the circumference of the circle. Show that AB = 5EF. Similarly the largest. . . .

A square of area 40 square cms is inscribed in a semicircle. Find the area of the square that could be inscribed in a circle of the same radius.

Investigate the properties of quadrilaterals which can be drawn with a circle just touching each side and another circle just touching each vertex.

A circle touches the lines OA, OB and AB where OA and OB are perpendicular. Show that the diameter of the circle is equal to the perimeter of the triangle

A white cross is placed symmetrically in a red disc with the central square of side length sqrt 2 and the arms of the cross of length 1 unit. What is the area of the disc still showing?

Explain how the thirteen pieces making up the regular hexagon shown in the diagram can be re-assembled to form three smaller regular hexagons congruent to each other.

Have a go at creating these images based on circles. What do you notice about the areas of the different sections?

This article for pupils gives some examples of how circles have featured in people's lives for centuries.

The ten arcs forming the edges of the "holly leaf" are all arcs of circles of radius 1 cm. Find the length of the perimeter of the holly leaf and the area of its surface.

This article gives an wonderful insight into students working on the Arclets problem that first appeared in the Sept 2002 edition of the NRICH website.

M is any point on the line AB. Squares of side length AM and MB are constructed and their circumcircles intersect at P (and M). Prove that the lines AD and BE produced pass through P.

A floor is covered by a tessellation of equilateral triangles, each having three equal arcs inside it. What proportion of the area of the tessellation is shaded?

Points A, B and C are the centres of three circles, each one of which touches the other two. Prove that the perimeter of the triangle ABC is equal to the diameter of the largest circle.

Two semi-circles (each of radius 1/2) touch each other, and a semi-circle of radius 1 touches both of them. Find the radius of the circle which touches all three semi-circles.

Find the area of the annulus in terms of the length of the chord which is tangent to the inner circle.

Semicircles are drawn on the sides of a rectangle. Prove that the sum of the areas of the four crescents is equal to the area of the rectangle.

An equilateral triangle is sitting on top of a square. What is the radius of the circle that circumscribes this shape?

The centre of the larger circle is at the midpoint of one side of an equilateral triangle and the circle touches the other two sides of the triangle. A smaller circle touches the larger circle and. . . .

What fractions of the largest circle are the two shaded regions?

Thinking of circles as polygons with an infinite number of sides - but how does this help us with our understanding of the circumference of circle as pi x d? This challenge investigates. . . .

Straight lines are drawn from each corner of a square to the mid points of the opposite sides. Express the area of the octagon that is formed at the centre as a fraction of the area of the square.

By inscribing a circle in a square and then a square in a circle find an approximation to pi. By using a hexagon, can you improve on the approximation?

Follow instructions to fold sheets of A4 paper into pentagons and assemble them to form a dodecahedron. Calculate the error in the angle of the not perfectly regular pentagons you make.

Show that for any triangle it is always possible to construct 3 touching circles with centres at the vertices. Is it possible to construct touching circles centred at the vertices of any polygon?

Read all about the number pi and the mathematicians who have tried to find out its value as accurately as possible.

The diagram shows a regular pentagon with sides of unit length. Find all the angles in the diagram. Prove that the quadrilateral shown in red is a rhombus.

An environment that enables you to investigate tessellations of regular polygons

This is the second in a twelve part introduction to Logo for beginners. In this part you learn to draw polygons.

If you continue the pattern, can you predict what each of the following areas will be? Try to explain your prediction.

Bluey-green, white and transparent squares with a few odd bits of shapes around the perimeter. But, how many squares are there of each type in the complete circle? Study the picture and make. . . .

In LOGO circles can be described in terms of polygons with an infinite (in this case large number) of sides - investigate this definition further.

What is the same and what is different about these circle questions? What connections can you make?