List any 3 numbers. It is always possible to find a subset of adjacent numbers that add up to a multiple of 3. Can you explain why and prove it?

I added together the first 'n' positive integers and found that my answer was a 3 digit number in which all the digits were the same...

Find some triples of whole numbers a, b and c such that a^2 + b^2 + c^2 is a multiple of 4. Is it necessarily the case that a, b and c must all be even? If so, can you explain why?

Can you convince me of each of the following: If a square number is multiplied by a square number the product is ALWAYS a square number...

Imagine we have four bags containing numbers from a sequence. What numbers can we make now?

Find some examples of pairs of numbers such that their sum is a factor of their product. eg. 4 + 12 = 16 and 4 × 12 = 48 and 16 is a factor of 48.

Choose any 3 digits and make a 6 digit number by repeating the 3 digits in the same order (e.g. 594594). Explain why whatever digits you choose the number will always be divisible by 7, 11 and 13.

A three digit number abc is always divisible by 7 when 2a+3b+c is divisible by 7. Why?

Caroline and James pick sets of five numbers. Charlie chooses three of them that add together to make a multiple of three. Can they stop him?

Three people chose this as a favourite problem. It is the sort of problem that needs thinking time - but once the connection is made it gives access to many similar ideas.

Make a set of numbers that use all the digits from 1 to 9, once and once only. Add them up. The result is divisible by 9. Add each of the digits in the new number. What is their sum? Now try some. . . .

Prove that if a^2+b^2 is a multiple of 3 then both a and b are multiples of 3.

115^2 = (110 x 120) + 25, that is 13225 895^2 = (890 x 900) + 25, that is 801025 Can you explain what is happening and generalise?

Can you find any perfect numbers? Read this article to find out more...

A game for two people, or play online. Given a target number, say 23, and a range of numbers to choose from, say 1-4, players take it in turns to add to the running total to hit their target.

How many noughts are at the end of these giant numbers?

Ben, Jack and Emma passed counters to each other and ended with the same number of counters. How many did they start with?

I added together some of my neighbours' house numbers. Can you explain the patterns I noticed?

Is there an efficient way to work out how many factors a large number has?

Imagine we have four bags containing a large number of 1s, 4s, 7s and 10s. What numbers can we make?

Find the largest integer which divides every member of the following sequence: 1^5-1, 2^5-2, 3^5-3, ... n^5-n.

Find the smallest positive integer N such that N/2 is a perfect cube, N/3 is a perfect fifth power and N/5 is a perfect seventh power.

Can you explain the strategy for winning this game with any target?

Got It game for an adult and child. How can you play so that you know you will always win?

Factor track is not a race but a game of skill. The idea is to go round the track in as few moves as possible, keeping to the rules.

Find the number which has 8 divisors, such that the product of the divisors is 331776.

Can you find what the last two digits of the number $4^{1999}$ are?

Can you find a way to identify times tables after they have been shifted up or down?

The clues for this Sudoku are the product of the numbers in adjacent squares.

The five digit number A679B, in base ten, is divisible by 72. What are the values of A and B?

Using the digits 1, 2, 3, 4, 5, 6, 7 and 8, mulitply a two two digit numbers are multiplied to give a four digit number, so that the expression is correct. How many different solutions can you find?

Play this game and see if you can figure out the computer's chosen number.

The items in the shopping basket add and multiply to give the same amount. What could their prices be?

Can you find any two-digit numbers that satisfy all of these statements?

Gabriel multiplied together some numbers and then erased them. Can you figure out where each number was?

Twice a week I go swimming and swim the same number of lengths of the pool each time. As I swim, I count the lengths I've done so far, and make it into a fraction of the whole number of lengths I. . . .

Can you find a cuboid that has a surface area of exactly 100 square units. Is there more than one? Can you find them all?

Play the divisibility game to create numbers in which the first two digits make a number divisible by 2, the first three digits make a number divisible by 3...

Find the highest power of 11 that will divide into 1000! exactly.

Data is sent in chunks of two different sizes - a yellow chunk has 5 characters and a blue chunk has 9 characters. A data slot of size 31 cannot be exactly filled with a combination of yellow and. . . .

Each letter represents a different positive digit AHHAAH / JOKE = HA What are the values of each of the letters?

The number 8888...88M9999...99 is divisible by 7 and it starts with the digit 8 repeated 50 times and ends with the digit 9 repeated 50 times. What is the value of the digit M?

The number 12 = 2^2 × 3 has 6 factors. What is the smallest natural number with exactly 36 factors?

You are given the Lowest Common Multiples of sets of digits. Find the digits and then solve the Sudoku.

I'm thinking of a number. My number is both a multiple of 5 and a multiple of 6. What could my number be?

Given the products of diagonally opposite cells - can you complete this Sudoku?

What is the largest number which, when divided into 1905, 2587, 3951, 7020 and 8725 in turn, leaves the same remainder each time?

I put eggs into a basket in groups of 7 and noticed that I could easily have divided them into piles of 2, 3, 4, 5 or 6 and always have one left over. How many eggs were in the basket?

A number N is divisible by 10, 90, 98 and 882 but it is NOT divisible by 50 or 270 or 686 or 1764. It is also known that N is a factor of 9261000. What is N?

Do you know a quick way to check if a number is a multiple of two? How about three, four or six?