Given the products of diagonally opposite cells - can you complete this Sudoku?

Can you explain the strategy for winning this game with any target?

Got It game for an adult and child. How can you play so that you know you will always win?

Arrange the four number cards on the grid, according to the rules, to make a diagonal, vertical or horizontal line.

Can you find a cuboid that has a surface area of exactly 100 square units. Is there more than one? Can you find them all?

An environment which simulates working with Cuisenaire rods.

The clues for this Sudoku are the product of the numbers in adjacent squares.

Can you find a relationship between the number of dots on the circle and the number of steps that will ensure that all points are hit?

Here is a machine with four coloured lights. Can you develop a strategy to work out the rules controlling each light?

A student in a maths class was trying to get some information from her teacher. She was given some clues and then the teacher ended by saying, "Well, how old are they?"

A collection of resources to support work on Factors and Multiples at Secondary level.

The puzzle can be solved by finding the values of the unknown digits (all indicated by asterisks) in the squares of the $9\times9$ grid.

A game in which players take it in turns to choose a number. Can you block your opponent?

A game for two people, or play online. Given a target number, say 23, and a range of numbers to choose from, say 1-4, players take it in turns to add to the running total to hit their target.

Factors and Multiples game for an adult and child. How can you make sure you win this game?

Play this game and see if you can figure out the computer's chosen number.

The items in the shopping basket add and multiply to give the same amount. What could their prices be?

Find some examples of pairs of numbers such that their sum is a factor of their product. eg. 4 + 12 = 16 and 4 × 12 = 48 and 16 is a factor of 48.

Given the products of adjacent cells, can you complete this Sudoku?

Is there a relationship between the coordinates of the endpoints of a line and the number of grid squares it crosses?

Caroline and James pick sets of five numbers. Charlie chooses three of them that add together to make a multiple of three. Can they stop him?

Ben, Jack and Emma passed counters to each other and ended with the same number of counters. How many did they start with?

Take any pair of numbers, say 9 and 14. Take the larger number, fourteen, and count up in 14s. Then divide each of those values by the 9, and look at the remainders.

A three digit number abc is always divisible by 7 when 2a+3b+c is divisible by 7. Why?

I added together the first 'n' positive integers and found that my answer was a 3 digit number in which all the digits were the same...

I added together some of my neighbours' house numbers. Can you explain the patterns I noticed?

Play the divisibility game to create numbers in which the first two digits make a number divisible by 2, the first three digits make a number divisible by 3...

How many numbers less than 1000 are NOT divisible by either: a) 2 or 5; or b) 2, 5 or 7?

In how many ways can the number 1 000 000 be expressed as the product of three positive integers?

Choose any 3 digits and make a 6 digit number by repeating the 3 digits in the same order (e.g. 594594). Explain why whatever digits you choose the number will always be divisible by 7, 11 and 13.

Here is a Sudoku with a difference! Use information about lowest common multiples to help you solve it.

List any 3 numbers. It is always possible to find a subset of adjacent numbers that add up to a multiple of 3. Can you explain why and prove it?

Imagine we have four bags containing a large number of 1s, 4s, 7s and 10s. What numbers can we make?

Imagine we have four bags containing numbers from a sequence. What numbers can we make now?

Find some triples of whole numbers a, b and c such that a^2 + b^2 + c^2 is a multiple of 4. Is it necessarily the case that a, b and c must all be even? If so, can you explain why?

Can you find any perfect numbers? Read this article to find out more...

Can you find any two-digit numbers that satisfy all of these statements?

Gabriel multiplied together some numbers and then erased them. Can you figure out where each number was?

The number 8888...88M9999...99 is divisible by 7 and it starts with the digit 8 repeated 50 times and ends with the digit 9 repeated 50 times. What is the value of the digit M?

How many integers between 1 and 1200 are NOT multiples of any of the numbers 2, 3 or 5?

Follow this recipe for sieving numbers and see what interesting patterns emerge.

Can you work out what size grid you need to read our secret message?

Each letter represents a different positive digit AHHAAH / JOKE = HA What are the values of each of the letters?

Find the highest power of 11 that will divide into 1000! exactly.

Factor track is not a race but a game of skill. The idea is to go round the track in as few moves as possible, keeping to the rules.

What is the smallest number of answers you need to reveal in order to work out the missing headers?

Which pairs of cogs let the coloured tooth touch every tooth on the other cog? Which pairs do not let this happen? Why?

Can you make lines of Cuisenaire rods that differ by 1?

Can you work out how many lengths I swim each day?