Got It game for an adult and child. How can you play so that you know you will always win?

Can you explain the strategy for winning this game with any target?

I added together some of my neighbours' house numbers. Can you explain the patterns I noticed?

List any 3 numbers. It is always possible to find a subset of adjacent numbers that add up to a multiple of 3. Can you explain why and prove it?

When the number x 1 x x x is multiplied by 417 this gives the answer 9 x x x 0 5 7. Find the missing digits, each of which is represented by an "x" .

A three digit number abc is always divisible by 7 when 2a+3b+c is divisible by 7. Why?

I added together the first 'n' positive integers and found that my answer was a 3 digit number in which all the digits were the same...

Find some triples of whole numbers a, b and c such that a^2 + b^2 + c^2 is a multiple of 4. Is it necessarily the case that a, b and c must all be even? If so, can you explain why?

Make a set of numbers that use all the digits from 1 to 9, once and once only. Add them up. The result is divisible by 9. Add each of the digits in the new number. What is their sum? Now try some. . . .

Choose any 3 digits and make a 6 digit number by repeating the 3 digits in the same order (e.g. 594594). Explain why whatever digits you choose the number will always be divisible by 7, 11 and 13.

Find some examples of pairs of numbers such that their sum is a factor of their product. eg. 4 + 12 = 16 and 4 × 12 = 48 and 16 is a factor of 48.

Is there an efficient way to work out how many factors a large number has?

How many noughts are at the end of these giant numbers?

Can you convince me of each of the following: If a square number is multiplied by a square number the product is ALWAYS a square number...

Imagine we have four bags containing numbers from a sequence. What numbers can we make now?

Imagine we have four bags containing a large number of 1s, 4s, 7s and 10s. What numbers can we make?

A student in a maths class was trying to get some information from her teacher. She was given some clues and then the teacher ended by saying, "Well, how old are they?"

Here is a Sudoku with a difference! Use information about lowest common multiples to help you solve it.

You are given the Lowest Common Multiples of sets of digits. Find the digits and then solve the Sudoku.

Each letter represents a different positive digit AHHAAH / JOKE = HA What are the values of each of the letters?

Three people chose this as a favourite problem. It is the sort of problem that needs thinking time - but once the connection is made it gives access to many similar ideas.

Twice a week I go swimming and swim the same number of lengths of the pool each time. As I swim, I count the lengths I've done so far, and make it into a fraction of the whole number of lengths I. . . .

The five digit number A679B, in base ten, is divisible by 72. What are the values of A and B?

The items in the shopping basket add and multiply to give the same amount. What could their prices be?

Arrange the four number cards on the grid, according to the rules, to make a diagonal, vertical or horizontal line.

Given the products of adjacent cells, can you complete this Sudoku?

The puzzle can be solved by finding the values of the unknown digits (all indicated by asterisks) in the squares of the $9\times9$ grid.

Can you find any two-digit numbers that satisfy all of these statements?

Gabriel multiplied together some numbers and then erased them. Can you figure out where each number was?

Find the highest power of 11 that will divide into 1000! exactly.

The clues for this Sudoku are the product of the numbers in adjacent squares.

Play the divisibility game to create numbers in which the first two digits make a number divisible by 2, the first three digits make a number divisible by 3...

Can you work out what size grid you need to read our secret message?

The number 8888...88M9999...99 is divisible by 7 and it starts with the digit 8 repeated 50 times and ends with the digit 9 repeated 50 times. What is the value of the digit M?

Ben passed a third of his counters to Jack, Jack passed a quarter of his counters to Emma and Emma passed a fifth of her counters to Ben. After this they all had the same number of counters.

Follow this recipe for sieving numbers and see what interesting patterns emerge.

Can you find any perfect numbers? Read this article to find out more...

Find a cuboid (with edges of integer values) that has a surface area of exactly 100 square units. Is there more than one? Can you find them all?

Prove that if a^2+b^2 is a multiple of 3 then both a and b are multiples of 3.

A game for two people, or play online. Given a target number, say 23, and a range of numbers to choose from, say 1-4, players take it in turns to add to the running total to hit their target.

I'm thinking of a number. My number is both a multiple of 5 and a multiple of 6. What could my number be?

Given the products of diagonally opposite cells - can you complete this Sudoku?

Complete the following expressions so that each one gives a four digit number as the product of two two digit numbers and uses the digits 1 to 8 once and only once.

Find the number which has 8 divisors, such that the product of the divisors is 331776.

Can you find what the last two digits of the number $4^{1999}$ are?

What is the value of the digit A in the sum below: [3(230 + A)]^2 = 49280A

I put eggs into a basket in groups of 7 and noticed that I could easily have divided them into piles of 2, 3, 4, 5 or 6 and always have one left over. How many eggs were in the basket?

Explain why the arithmetic sequence 1, 14, 27, 40, ... contains many terms of the form 222...2 where only the digit 2 appears.

Using the digits 1 to 9, the number 4396 can be written as the product of two numbers. Can you find the factors?

Helen made the conjecture that "every multiple of six has more factors than the two numbers either side of it". Is this conjecture true?