Play the divisibility game to create numbers in which the first two digits make a number divisible by 2, the first three digits make a number divisible by 3...

Here is a Sudoku with a difference! Use information about lowest common multiples to help you solve it.

The clues for this Sudoku are the product of the numbers in adjacent squares.

Ben, Jack and Emma passed counters to each other and ended with the same number of counters. How many did they start with?

A student in a maths class was trying to get some information from her teacher. She was given some clues and then the teacher ended by saying, "Well, how old are they?"

The puzzle can be solved by finding the values of the unknown digits (all indicated by asterisks) in the squares of the $9\times9$ grid.

Play this game and see if you can figure out the computer's chosen number.

Which pairs of cogs let the coloured tooth touch every tooth on the other cog? Which pairs do not let this happen? Why?

A three digit number abc is always divisible by 7 when 2a+3b+c is divisible by 7. Why?

Factor track is not a race but a game of skill. The idea is to go round the track in as few moves as possible, keeping to the rules.

The number 8888...88M9999...99 is divisible by 7 and it starts with the digit 8 repeated 50 times and ends with the digit 9 repeated 50 times. What is the value of the digit M?

What is the remainder when 2^2002 is divided by 7? What happens with different powers of 2?

This article takes the reader through divisibility tests and how they work. An article to read with pencil and paper to hand.

A collection of resources to support work on Factors and Multiples at Secondary level.

Three people chose this as a favourite problem. It is the sort of problem that needs thinking time - but once the connection is made it gives access to many similar ideas.

6! = 6 x 5 x 4 x 3 x 2 x 1. The highest power of 2 that divides exactly into 6! is 4 since (6!) / (2^4 ) = 45. What is the highest power of two that divides exactly into 100!?

Make a set of numbers that use all the digits from 1 to 9, once and once only. Add them up. The result is divisible by 9. Add each of the digits in the new number. What is their sum? Now try some. . . .

Given the products of adjacent cells, can you complete this Sudoku?

Given the products of diagonally opposite cells - can you complete this Sudoku?

Arrange the four number cards on the grid, according to the rules, to make a diagonal, vertical or horizontal line.

Is there an efficient way to work out how many factors a large number has?

The items in the shopping basket add and multiply to give the same amount. What could their prices be?

Lyndon chose this as one of his favourite problems. It is accessible but needs some careful analysis of what is included and what is not. A systematic approach is really helpful.

How many numbers less than 1000 are NOT divisible by either: a) 2 or 5; or b) 2, 5 or 7?

I'm thinking of a number. My number is both a multiple of 5 and a multiple of 6. What could my number be?

Can you work out what size grid you need to read our secret message?

What is the value of the digit A in the sum below: [3(230 + A)]^2 = 49280A

Gabriel multiplied together some numbers and then erased them. Can you figure out where each number was?

Consider numbers of the form un = 1! + 2! + 3! +...+n!. How many such numbers are perfect squares?

Find the highest power of 11 that will divide into 1000! exactly.

Choose any 3 digits and make a 6 digit number by repeating the 3 digits in the same order (e.g. 594594). Explain why whatever digits you choose the number will always be divisible by 7, 11 and 13.

Find the number which has 8 divisors, such that the product of the divisors is 331776.

Do you know a quick way to check if a number is a multiple of two? How about three, four or six?

What is the largest number which, when divided into 1905, 2587, 3951, 7020 and 8725 in turn, leaves the same remainder each time?

A number N is divisible by 10, 90, 98 and 882 but it is NOT divisible by 50 or 270 or 686 or 1764. It is also known that N is a factor of 9261000. What is N?

Explain why the arithmetic sequence 1, 14, 27, 40, ... contains many terms of the form 222...2 where only the digit 2 appears.

Using the digits 1 to 9, the number 4396 can be written as the product of two numbers. Can you find the factors?

The flow chart requires two numbers, M and N. Select several values for M and try to establish what the flow chart does.

Think of any three-digit number. Repeat the digits. The 6-digit number that you end up with is divisible by 91. Is this a coincidence?

How many integers between 1 and 1200 are NOT multiples of any of the numbers 2, 3 or 5?

A game for two people, or play online. Given a target number, say 23, and a range of numbers to choose from, say 1-4, players take it in turns to add to the running total to hit their target.

Each letter represents a different positive digit AHHAAH / JOKE = HA What are the values of each of the letters?

Can you find a relationship between the number of dots on the circle and the number of steps that will ensure that all points are hit?

The number 12 = 2^2 × 3 has 6 factors. What is the smallest natural number with exactly 36 factors?

Take any prime number greater than 3 , square it and subtract one. Working on the building blocks will help you to explain what is special about your results.

Can you find any perfect numbers? Read this article to find out more...

Using the digits 1, 2, 3, 4, 5, 6, 7 and 8, mulitply a two two digit numbers are multiplied to give a four digit number, so that the expression is correct. How many different solutions can you find?

The five digit number A679B, in base ten, is divisible by 72. What are the values of A and B?

Complete the following expressions so that each one gives a four digit number as the product of two two digit numbers and uses the digits 1 to 8 once and only once.

Can you find any two-digit numbers that satisfy all of these statements?