Find the largest integer which divides every member of the following sequence: 1^5-1, 2^5-2, 3^5-3, ... n^5-n.

Can you convince me of each of the following: If a square number is multiplied by a square number the product is ALWAYS a square number...

The nth term of a sequence is given by the formula n^3 + 11n . Find the first four terms of the sequence given by this formula and the first term of the sequence which is bigger than one million. . . .

115^2 = (110 x 120) + 25, that is 13225 895^2 = (890 x 900) + 25, that is 801025 Can you explain what is happening and generalise?

I added together some of my neighbours' house numbers. Can you explain the patterns I noticed?

Helen made the conjecture that "every multiple of six has more factors than the two numbers either side of it". Is this conjecture true?

Given any 3 digit number you can use the given digits and name another number which is divisible by 37 (e.g. given 628 you say 628371 is divisible by 37 because you know that 6+3 = 2+7 = 8+1 = 9). . . .

Caroline and James pick sets of five numbers. Charlie chooses three of them that add together to make a multiple of three. Can they stop him?

Data is sent in chunks of two different sizes - a yellow chunk has 5 characters and a blue chunk has 9 characters. A data slot of size 31 cannot be exactly filled with a combination of yellow and. . . .

What is the largest number which, when divided into 1905, 2587, 3951, 7020 and 8725 in turn, leaves the same remainder each time?

Each letter represents a different positive digit AHHAAH / JOKE = HA What are the values of each of the letters?

This article takes the reader through divisibility tests and how they work. An article to read with pencil and paper to hand.

Can you work out what size grid you need to read our secret message?

Prove that if the integer n is divisible by 4 then it can be written as the difference of two squares.

Using the digits 1, 2, 3, 4, 5, 6, 7 and 8, mulitply a two two digit numbers are multiplied to give a four digit number, so that the expression is correct. How many different solutions can you find?

Make a set of numbers that use all the digits from 1 to 9, once and once only. Add them up. The result is divisible by 9. Add each of the digits in the new number. What is their sum? Now try some. . . .

Can you find any two-digit numbers that satisfy all of these statements?

Imagine we have four bags containing numbers from a sequence. What numbers can we make now?

Given the products of diagonally opposite cells - can you complete this Sudoku?

Prove that if a^2+b^2 is a multiple of 3 then both a and b are multiples of 3.

Is there an efficient way to work out how many factors a large number has?

How many noughts are at the end of these giant numbers?

Imagine we have four bags containing a large number of 1s, 4s, 7s and 10s. What numbers can we make?

The items in the shopping basket add and multiply to give the same amount. What could their prices be?

You are given the Lowest Common Multiples of sets of digits. Find the digits and then solve the Sudoku.

A three digit number abc is always divisible by 7 when 2a+3b+c is divisible by 7. Why?

I added together the first 'n' positive integers and found that my answer was a 3 digit number in which all the digits were the same...

Find some triples of whole numbers a, b and c such that a^2 + b^2 + c^2 is a multiple of 4. Is it necessarily the case that a, b and c must all be even? If so, can you explain why?

The number 12 = 2^2 × 3 has 6 factors. What is the smallest natural number with exactly 36 factors?

Can you find any perfect numbers? Read this article to find out more...

Make a line of green and a line of yellow rods so that the lines differ in length by one (a white rod)

Factor track is not a race but a game of skill. The idea is to go round the track in as few moves as possible, keeping to the rules.

The puzzle can be solved by finding the values of the unknown digits (all indicated by asterisks) in the squares of the $9\times9$ grid.

Three people chose this as a favourite problem. It is the sort of problem that needs thinking time - but once the connection is made it gives access to many similar ideas.

How many zeros are there at the end of the number which is the product of first hundred positive integers?

Here is a Sudoku with a difference! Use information about lowest common multiples to help you solve it.

List any 3 numbers. It is always possible to find a subset of adjacent numbers that add up to a multiple of 3. Can you explain why and prove it?

Find the smallest positive integer N such that N/2 is a perfect cube, N/3 is a perfect fifth power and N/5 is a perfect seventh power.

When the number x 1 x x x is multiplied by 417 this gives the answer 9 x x x 0 5 7. Find the missing digits, each of which is represented by an "x" .

Can you explain the strategy for winning this game with any target?

Consider numbers of the form un = 1! + 2! + 3! +...+n!. How many such numbers are perfect squares?

Find some examples of pairs of numbers such that their sum is a factor of their product. eg. 4 + 12 = 16 and 4 × 12 = 48 and 16 is a factor of 48.

Can you find what the last two digits of the number $4^{1999}$ are?

Choose any 3 digits and make a 6 digit number by repeating the 3 digits in the same order (e.g. 594594). Explain why whatever digits you choose the number will always be divisible by 7, 11 and 13.

Complete the following expressions so that each one gives a four digit number as the product of two two digit numbers and uses the digits 1 to 8 once and only once.

Find the number which has 8 divisors, such that the product of the divisors is 331776.

What is the value of the digit A in the sum below: [3(230 + A)]^2 = 49280A

Do you know a quick way to check if a number is a multiple of two? How about three, four or six?

Can you find a way to identify times tables after they have been shifted up or down?