Using the digits 1 to 9, the number 4396 can be written as the product of two numbers. Can you find the factors?

Gabriel multiplied together some numbers and then erased them. Can you figure out where each number was?

I'm thinking of a number. My number is both a multiple of 5 and a multiple of 6. What could my number be?

I put eggs into a basket in groups of 7 and noticed that I could easily have divided them into piles of 2, 3, 4, 5 or 6 and always have one left over. How many eggs were in the basket?

What is the remainder when 2^2002 is divided by 7? What happens with different powers of 2?

When the number x 1 x x x is multiplied by 417 this gives the answer 9 x x x 0 5 7. Find the missing digits, each of which is represented by an "x" .

6! = 6 x 5 x 4 x 3 x 2 x 1. The highest power of 2 that divides exactly into 6! is 4 since (6!) / (2^4 ) = 45. What is the highest power of two that divides exactly into 100!?

The number 8888...88M9999...99 is divisible by 7 and it starts with the digit 8 repeated 50 times and ends with the digit 9 repeated 50 times. What is the value of the digit M?

In how many ways can the number 1 000 000 be expressed as the product of three positive integers?

The number 12 = 2^2 × 3 has 6 factors. What is the smallest natural number with exactly 36 factors?

How many integers between 1 and 1200 are NOT multiples of any of the numbers 2, 3 or 5?

Explain why the arithmetic sequence 1, 14, 27, 40, ... contains many terms of the form 222...2 where only the digit 2 appears.

A number N is divisible by 10, 90, 98 and 882 but it is NOT divisible by 50 or 270 or 686 or 1764. It is also known that N is a factor of 9261000. What is N?

Find the highest power of 11 that will divide into 1000! exactly.

Can you make lines of Cuisenaire rods that differ by 1?

What is the largest number which, when divided into 1905, 2587, 3951, 7020 and 8725 in turn, leaves the same remainder each time?

Do you know a quick way to check if a number is a multiple of two? How about three, four or six?

Find the number which has 8 divisors, such that the product of the divisors is 331776.

Can you work out what size grid you need to read our secret message?

Data is sent in chunks of two different sizes - a yellow chunk has 5 characters and a blue chunk has 9 characters. A data slot of size 31 cannot be exactly filled with a combination of yellow and. . . .

Follow this recipe for sieving numbers and see what interesting patterns emerge.

Which pairs of cogs let the coloured tooth touch every tooth on the other cog? Which pairs do not let this happen? Why?

Consider numbers of the form un = 1! + 2! + 3! +...+n!. How many such numbers are perfect squares?

Factor track is not a race but a game of skill. The idea is to go round the track in as few moves as possible, keeping to the rules.

A three digit number abc is always divisible by 7 when 2a+3b+c is divisible by 7. Why?

Using the digits 1, 2, 3, 4, 5, 6, 7 and 8, mulitply a two two digit numbers are multiplied to give a four digit number, so that the expression is correct. How many different solutions can you find?

Given the products of adjacent cells, can you complete this Sudoku?

Three people chose this as a favourite problem. It is the sort of problem that needs thinking time - but once the connection is made it gives access to many similar ideas.

What is the smallest number of answers you need to reveal in order to work out the missing headers?

Play the divisibility game to create numbers in which the first two digits make a number divisible by 2, the first three digits make a number divisible by 3...

Ben passed a third of his counters to Jack, Jack passed a quarter of his counters to Emma and Emma passed a fifth of her counters to Ben. After this they all had the same number of counters.

Play this game and see if you can figure out the computer's chosen number.

Can you find any perfect numbers? Read this article to find out more...

Each letter represents a different positive digit AHHAAH / JOKE = HA What are the values of each of the letters?

Is there an efficient way to work out how many factors a large number has?

The five digit number A679B, in base ten, is divisible by 72. What are the values of A and B?

How many zeros are there at the end of the number which is the product of first hundred positive integers?

Take any pair of numbers, say 9 and 14. Take the larger number, fourteen, and count up in 14s. Then divide each of those values by the 9, and look at the remainders.

Choose any 3 digits and make a 6 digit number by repeating the 3 digits in the same order (e.g. 594594). Explain why whatever digits you choose the number will always be divisible by 7, 11 and 13.

Can you find what the last two digits of the number $4^{1999}$ are?

What is the value of the digit A in the sum below: [3(230 + A)]^2 = 49280A

Explore the factors of the numbers which are written as 10101 in different number bases. Prove that the numbers 10201, 11011 and 10101 are composite in any base.

This article takes the reader through divisibility tests and how they work. An article to read with pencil and paper to hand.

List any 3 numbers. It is always possible to find a subset of adjacent numbers that add up to a multiple of 3. Can you explain why and prove it?

Find the smallest positive integer N such that N/2 is a perfect cube, N/3 is a perfect fifth power and N/5 is a perfect seventh power.

Here is a Sudoku with a difference! Use information about lowest common multiples to help you solve it.

How many numbers less than 1000 are NOT divisible by either: a) 2 or 5; or b) 2, 5 or 7?

Complete the following expressions so that each one gives a four digit number as the product of two two digit numbers and uses the digits 1 to 8 once and only once.

The clues for this Sudoku are the product of the numbers in adjacent squares.

A collection of resources to support work on Factors and Multiples at Secondary level.