How many integers between 1 and 1200 are NOT multiples of any of the numbers 2, 3 or 5?

Follow this recipe for sieving numbers and see what interesting patterns emerge.

Which pairs of cogs let the coloured tooth touch every tooth on the other cog? Which pairs do not let this happen? Why?

Can you make lines of Cuisenaire rods that differ by 1?

Using the digits 1 to 9, the number 4396 can be written as the product of two numbers. Can you find the factors?

Gabriel multiplied together some numbers and then erased them. Can you figure out where each number was?

Can you work out what size grid you need to read our secret message?

Find the highest power of 11 that will divide into 1000! exactly.

In how many ways can the number 1 000 000 be expressed as the product of three positive integers?

6! = 6 x 5 x 4 x 3 x 2 x 1. The highest power of 2 that divides exactly into 6! is 4 since (6!) / (2^4 ) = 45. What is the highest power of two that divides exactly into 100!?

How many numbers less than 1000 are NOT divisible by either: a) 2 or 5; or b) 2, 5 or 7?

What is the remainder when 2^2002 is divided by 7? What happens with different powers of 2?

The number 12 = 2^2 × 3 has 6 factors. What is the smallest natural number with exactly 36 factors?

The number 8888...88M9999...99 is divisible by 7 and it starts with the digit 8 repeated 50 times and ends with the digit 9 repeated 50 times. What is the value of the digit M?

Three people chose this as a favourite problem. It is the sort of problem that needs thinking time - but once the connection is made it gives access to many similar ideas.

Take any pair of numbers, say 9 and 14. Take the larger number, fourteen, and count up in 14s. Then divide each of those values by the 9, and look at the remainders.

Given the products of adjacent cells, can you complete this Sudoku?

Explain why the arithmetic sequence 1, 14, 27, 40, ... contains many terms of the form 222...2 where only the digit 2 appears.

I'm thinking of a number. My number is both a multiple of 5 and a multiple of 6. What could my number be?

A number N is divisible by 10, 90, 98 and 882 but it is NOT divisible by 50 or 270 or 686 or 1764. It is also known that N is a factor of 9261000. What is N?

Data is sent in chunks of two different sizes - a yellow chunk has 5 characters and a blue chunk has 9 characters. A data slot of size 31 cannot be exactly filled with a combination of yellow and. . . .

What is the smallest number of answers you need to reveal in order to work out the missing headers?

Find the number which has 8 divisors, such that the product of the divisors is 331776.

What is the largest number which, when divided into 1905, 2587, 3951, 7020 and 8725 in turn, leaves the same remainder each time?

Do you know a quick way to check if a number is a multiple of two? How about three, four or six?

I put eggs into a basket in groups of 7 and noticed that I could easily have divided them into piles of 2, 3, 4, 5 or 6 and always have one left over. How many eggs were in the basket?

Play the divisibility game to create numbers in which the first two digits make a number divisible by 2, the first three digits make a number divisible by 3...

Using the digits 1, 2, 3, 4, 5, 6, 7 and 8, mulitply a two two digit numbers are multiplied to give a four digit number, so that the expression is correct. How many different solutions can you find?

The items in the shopping basket add and multiply to give the same amount. What could their prices be?

Factor track is not a race but a game of skill. The idea is to go round the track in as few moves as possible, keeping to the rules.

Is there an efficient way to work out how many factors a large number has?

Twice a week I go swimming and swim the same number of lengths of the pool each time. As I swim, I count the lengths I've done so far, and make it into a fraction of the whole number of lengths I. . . .

A three digit number abc is always divisible by 7 when 2a+3b+c is divisible by 7. Why?

Can you find a way to identify times tables after they have been shifted up or down?

Each letter represents a different positive digit AHHAAH / JOKE = HA What are the values of each of the letters?

Play this game and see if you can figure out the computer's chosen number.

Can you find a relationship between the number of dots on the circle and the number of steps that will ensure that all points are hit?

The clues for this Sudoku are the product of the numbers in adjacent squares.

Ben passed a third of his counters to Jack, Jack passed a quarter of his counters to Emma and Emma passed a fifth of her counters to Ben. After this they all had the same number of counters.

Can you find any perfect numbers? Read this article to find out more...

The puzzle can be solved by finding the values of the unknown digits (all indicated by asterisks) in the squares of the $9\times9$ grid.

The five digit number A679B, in base ten, is divisible by 72. What are the values of A and B?

How many zeros are there at the end of the number which is the product of first hundred positive integers?

A student in a maths class was trying to get some information from her teacher. She was given some clues and then the teacher ended by saying, "Well, how old are they?"

What is the value of the digit A in the sum below: [3(230 + A)]^2 = 49280A

Here is a Sudoku with a difference! Use information about lowest common multiples to help you solve it.

Can you find what the last two digits of the number $4^{1999}$ are?

Complete the following expressions so that each one gives a four digit number as the product of two two digit numbers and uses the digits 1 to 8 once and only once.

Helen made the conjecture that "every multiple of six has more factors than the two numbers either side of it". Is this conjecture true?

Using your knowledge of the properties of numbers, can you fill all the squares on the board?